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Abstract—Social robot navigation algorithms are often demon-
strated in overly simplified scenarios, prohibiting the extraction
of practical insights about their relevance to real-world domains.
Our key insight is that an understanding of the inherent complex-
ity of a social robot navigation scenario could help characterize
the limitations of existing navigation algorithms and provide ac-
tionable directions for improvement. We leverage an exploration
of recent literature to identify a series of factors contributing to
the complexity of a scenario, disambiguating between contextual
and robot-related ones. We then conduct a simulation study
investigating how manipulations of contextual factors impact the
performance of a variety of navigation algorithms. We find that
dense and narrow environments correlate most strongly with
performance drops, while the heterogeneity of agent policies and
directionality of interactions have a less pronounced effect. This
motivates a shift towards developing and testing algorithms under
higher-complexity settings.

I. INTRODUCTION

Recent surveys on social robot navigation [8, 9, 22, 28]
emphasize the need for a standardization of benchmarking
practices. A major challenge in standardizing benchmarking
in social navigation lies in the design of experiments, and
specifically in balancing repeatability and natural interactions.
While real-world experiments offer the most powerful insights,
their high cost has motivated the experimentation within virtual
environments [2]. Several works have developed photorealistic
simulators [2, 14, 33], while others have focused on finding
informative quantitative metrics [21, 27, 35]. However, as
demonstrated by Fraichard and Levesy [7], simulation often in-
troduces strong assumptions prohibiting the extraction of gen-
eralizable insights. Another challenge in designing benchmarks
is the lack of understanding of what makes a social navigation
scenario hard. In prior work, the crowd density [22, 30, 32] has
often been used as a proxy for complexity. However, density on
its own does not capture the complexity of the motion coupling
between closely interacting agents. To capture that, metrics
like Path Irregularity [11] and the Topological Complexity
Index [6, 21] quantify aspects of geometric and topological
richness of agents’ trajectories.

In this paper we argue that to establish effective bench-
marks for social robot navigation, the research community
should better understand and control the dimensions of problem
complexity. We enumerate a set of factors contributing to
the complexity of a social robot navigation scenario, distin-
guishing contextual factors from robot-related ones. We then
conduct an extensive simulated study to understand how robot-
independent, contextual factors impact algorithm performance.
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Fig. 1: We investigate how different parameters defining a social robot
navigation scenario impact the performance of recent algorithms. We show
that while many algorithms successfully handle a wide range of scenarios,
their performance drops at a region of Complexity that is representative of
real-world situations that humans effectively handle [12].

Our findings underscore the need for algorithms that explicitly
account for diverse, high Complexity scenarios, and bench-
marks that explore scenarios with high Complexity across
multiple factors.

II. FACTORS OF COMPLEXITY IN THE LITERATURE

Based on recent literature [29], we identified the factors
below as determinants of the complexity of a social robot
navigation scenario (see Fig. 2). We distinguish the factors
as contextual because they are agnostic to the robot platform.

Density. Density is often used as a proxy for the Complexity
of a scenario [22, 30, 32]. We report the standard agents/m2,
although we note this does not account for variable agent size.

Directionality. The directions in which humans encounter
the robot contribute to the difficulty of the collision-avoidance
task [36]. We identified four cases: Passing: Agents move
parallel, paths do not intersect; Crossing: Agents move per-
pendicular, paths intersect; Random: Agent starts and goals
are randomly sampled; Circle Crossing: Agent start and goals
are sampled on opposite sides of the circumference of a circle.

Environment Geometry. We find that most often, evalua-
tions take place in either hallways or medium to large office
rooms, which place no constraints on the agents’ movements.
Often, real environments involve geometries which create
challenging interactions, such as doorways and junctions.

Policy Mixture. Cooperative agents assume partial respon-
sibility for collision avoidance, which simplifies the robot’s
task. In contrast, when rushing, being distracted, or changing
intentions, humans may pose greater challenges to a robot [26].
We found that most real-world studies instruct participants



to navigate cooperatively, and most simulation-based studies
make use of cooperative crowd simulators [13, 34].

III. INVESTIGATING THE COMPLEXITY OF SOCIAL ROBOT
NAVIGATION SCENARIOS

We propose a definition of a Social robot navigation sce-
nario based on parameters related to the factors of Complexity
identified in Sec. II. We then describe an experiment design
that investigates the performance of a variety of navigation
algorithms under different scenarios.

A. Social Navigation Scenario

Consider a robot navigating next to n ≥ 1 human agents in a
workspace W ⊆ R2 with a set of static obstacles Wobs ⊆ W .
The robot starts from an initial configuration sR and moves
towards a goal gR by following a policy πR whereas humans
are navigating from their initial configurations si towards their
goals, gi by following a policy πi, i ∈ N ; agents’ goals are
unknown to one another. The robot occupies an area AR ∈ W ,
and each human occupies an area Ai ∈ W . The objective of
the robot is to reach its destination while avoiding collisions
with static obstacles and abiding by social norms. We define
a social navigation scenario as a tuple:

S = (n,AR, Ai:n, sR, gR, si:n, gi:n, πi:n,Wobs) . (1)
We denote by πi the true policy for agent i, capturing the
way they make decisions based on their objectives as well as
behavioral and contextual aspects of their navigation profile.

B. Experiment Design

We design scenarios of varying complexity by manipulating
each of the factors in Sec. II in isolation.

Scenario configurations. We first define a base scenario
Sb defining with n = 15, AR, Ai:n = π(0.3)2, sR = (5, 1),
gR = (5, 9), πi:n = ORCA,SFM, vpref = 1.0m/s, Wobs =
{[0, w] × [0, l]}c = {[0, 10] × [0, 10]}c; si:n, gi:n are sampled
from passing and crossing. We then modify a single variable
in each experiment, from low to high intensity:

• Density: {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}. We
choose this range following prior work [22, 32].

• Directionality: {Passing only, crossing only, passing and
crossing, circle crossing, random start/goal}. We found
that prior evaluations frequently involve passing scenarios
with one or two humans, although many papers set up
simultaneous passing and crossing scenarios. We also
find that while circle crossings are frequently used in
simulation to force Complex interactions [3, 4, 22, 31],
they do not appear as often in real robot evaluations.

• Policy Mixture: {SFM only, ORCA only, Mix 1, Mix
2, Mix 3}, where Mix 1 contains 8 ORCA and 7 SFM
agents, Mix 2 contains 5 ORCA, 5 SFM, 2 CV, 3 Static
agents, and Mix 3 contains 4 ORCA, 4 SFM, 4 CV, 3
Static agents, respectively. We add increasing inattentive
agents at higher intensity to model Complex real-world
scenarios in which the robot must navigate among coop-
erative and uncooperative agents simultaneously [20].

• Environment Width: {4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5},
which reflects the reported width of most hallways
(e.g., [15, 24, 38]).

(d) Density

(h) Width

(l) Directionality

(p) Agent Policy Mixture
Fig. 2: Left to right: Scenarios of increasing complexity for each of the
complexity factors considered (d-p). In the leftmost Directionality figure green
agents are crossing and blue agents are passing, while different colors represent
different policies in Policy Mixture.

Fig. 2 illustrates the configurations considered in our study.
Algorithms. We propose to evaluate the change in com-

plexity of a given scenario using the performance of several
navigation algorithms. Specifically, we employ:

• Relational Graph Learning (RGL) [4]: a reinforcement
learning based approach that models pedestrian interac-
tions using a graph neural network.

• Social GAN Model Predictive Control (MPC-SGAN) [10]:
An approach integrating a recent crowd motion prediction
model into an MPC framework, using the approach and
implementation of Poddar et al. [26].

• Constant Velocity Model Predictive Control (MPC-CV):
Identical to MPC-SGAN, but instead using CV motion
predictions for each agent.

• Social GAN Model Predictive Path Integral (MPPI-
SGAN): SGAN integrated into an MPPI controller.

• Reactive Planner (RP): A myopic planner that attempts
to avoid collisions while navigating towards the goal.

• Optimal Reciprocal Collision Avoidance (ORCA) [34]:
A multiagent collision avoidance method that guarantees
collision free movement among ORCA agents.

• Social Forces Model (SFM) [13]: A physics-inspired
model of crowd motion.

• Constant Velocity (CV): An unreactive agent that moves
with constant velocity toward the goal.

Metrics. Based on literature [8, 9, 22], we use the following
performance metrics, collected only from Successful trials:



• Success: The average number of trials in which the ego-
agent reaches its goal without collision.

• Time to goal: The average time to goal across trials.
• Distance to agent: The Minimum Distance to the nearest

other agent during a trial, averaged across trials.
• Path Irregularity [11]: The amount of unnecessary turn-

ing per unit path length, measured in rad
m , calculated as∑

Path
Rotation−Min. rotation needed

Path length .
Hypotheses. We expect that scenarios of higher Complexity

will pose greater navigation challenges, and this will be
reflected in significant performance drops across all algo-
rithms. Additionally, as Density is often used as a proxy for
Complexity as a whole, we anticipate that it will have the
strongest correlation with performance drop. Based on these
expectations, We formulate the following hypotheses:

• H1. Increasing the intensity of each of the four complexity
factors (Density, Directionality, Environment Geometry,
Policy Mixture) independently decreases performance
with respect to collected metrics.

• H2. The negative correlation between Complexity and
performance in H1 will be strongest for Density.

C. Implementation Details

We generated 500 trials for each condition within each
experiment and average metrics across successful trials. We
fix the random seed to ensure each method experiences the
same scenarios. For MPC-SGAN/CV and MPPI-SGAN, we
use a checkpoint pretrained on the Zara portion of the UCY
dataset [16], and follow the formulation of Poddar et al. [26].

D. Results

Fig. 3 summarizes our experimental results, organized by
experiment types (rows) and metrics (columns). Based on this
data, we investigate the validity of our hypotheses:

H1. We find a statistically significant correlation between
Density and Success rate and Minimum Distance to agent
(ρ = −0.867,−0.735, p < 0.001 using Spearman’s r test), and
a moderate correlation between Density and average Time and
Path Irregularity (ρ = 0.499, 0.463, p < 0.001). We also find
a correlation between increasing width and method Success
(ρ = 0.593, p < 0.001), and a correlation between width and
Minimum Distance (ρ = 0.285, p < 0.05). We do not find
any statistically significant correlation with average Time or
Path Irregularity. Regarding Policy Mixture and Directionality,
we find strong and moderate correlations respectively between
higher intensity and Success (ρ = −0.715,−0.462, p <
0.002), and a moderate correlation between Directionality and
average Time (ρ = −0.314, p < 0.05). We see no significant
correlation for Minimum Distance and Path Irregularity in
either case. Thus, we find that while each factor affects at
least one metric, Density and Environment Geometry have the
strongest correlation, giving partial support for H1.

H2. We observe that the correlations between Density and
other collected metrics are all stronger than those of the other
factors. Thus we find support for H2.

While Density correlates strongest with Complexity, we
see that the Environment Geometry, Directionality, and agent
policies all have at least some correlation with performance,

and thus should be considered when assessing the Complexity
of a scenario. While the support for H2 vindicates prior use
of Density as a proxy for Complexity, the partial support for
H1 suggests that a more accurate picture can be obtained by
analyzing the rest of the contextual factors.

MPC-CV, MPC-SGAN, and MPPI-SGAN performance
scales poorly with moderate to high crowd density. We do
observe that MPPI-SGAN consistently has higher Success
rates than MPC-SGAN, showing that a stronger controller
implementation does indeed lead to better performance (albeit
with slightly lower Minimum Distances). The steep decrease
of all three methods, however, indicates that having an in-
accurate prediction model becomes increasingly problematic
as the number of agent trajectories predicted increases, even
with a more robust controller. RGL, on the other hand, sees
performance scale better with regard to density.

In nearly all experiments, RP and ORCA had low average
Time, while still maintaining comparable or better Success
rates to other methods. Even the CV agent was moderately
Successful in lower Complexity scenarios, which matches prior
experimental outcomes [22]. SFM’s high Success rates and
Minimum Distances indicate that with proper tuning it could
be viable as a local controller for a socially navigating robot.

We do however see that the MPC methods maintain the
highest Minimum Distance, while ORCA, RP, and CV have the
lowest Minimum Distances. Additionally, the MPC methods,
with the exception of the Environment Width experiments,
maintain comparable Path Irregularity to ORCA, SFM, and
RGL, showing they can maintain distance with compara-
bly smooth paths. Thus we see that while the reactive and
CV methods (with the exception of SFM) achieve efficient,
collision-free navigation through other agents’ cooperation,
they are worse at respecting the personal space of others
compared to predictive methods.

Qualitatively, we observed that passing scenarios are gen-
erally easier to navigate than crossing, and SFM agents are
much more subservient than ORCA. An implicit hypothesis
in our experimental ordering was that a mixture of two
Directionalities or Policy Mixtures would be more Complex to
navigate than either individually. We instead see improvement
in the ORCA/SFM and Passing/Crossing scenarios compared
to ORCA and Crossing only, which suggests the combinations
are actually less Complex.

IV. DISCUSSION

Conducting high-Complexity evaluations. Our experi-
ments demonstrate that most algorithms handle the most
common evaluation scenarios in recent literature (low-medium
density, passing only, medium-large rooms, cooperative agents
[29]), but struggle in more Complex settings. This indicates the
most frequently used scenarios are not the best for extracting
useful insights; for example, had we not manipulated the
Complexity factors towards the upper extremes, the severe
performance drops at high density experienced by MPC-CV,
MPC-SGAN, and MPPI-SGAN would not have been identi-
fied. These observations suggest that the social navigation com-
munity should shift to studying denser, more geometrically-



Fig. 3: Performance of methods across our experiments. Rows indicate experiments and columns correspond to different evaluation metrics. Each point
represents the mean over 500 experiments; shaded regions indicate standard deviation. Mix 1 has 7 SFM and 8 ORCA agents. Mix 2 has 5 SFM, 5 ORCA, 2
CV, and 3 static agents. Mix 3 has 4 SFM, 4 ORCA, 4 CV, 3 static agents.
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constrained, highly-mixed and high-traffic environments, sim-
ilar to many context-rich public domains.

Handling test-time distribution. The high Success rates
of CV and RP suggest that in lower-Complexity regimes,
it might be sufficient to use non-reactive classical planning
techniques. As the Complexity increases, all algorithms ex-
perience a steep decline; the magnitude of the decline is
related to how far out of distribution an algorithm operates.
Our evaluation (Fig. 3) captures the sensitivity of data-driven
approaches to their training distribution. For instance, we see
that RGL, and MPC/MPPI-SGAN experience a substantial
performance decline as test-time Density moves away from
training/tuning Density (0.05, 0.10 agents/m2). In practice,
data-driven approaches will often face distribution shift at
deployment, which motivates the development of algorithms
for overcoming distribution shifts to be an important di-
rection [18, 39]. Alternative approaches include techniques

for proactive, expressive motion generation [1, 21, 35] or
techniques that use graceful touch [25], similar to how humans
resolve close interactions in train stations or airports [12].

Simulating complex settings. While realistically simulating
pedestrian-robot interactions is challenging [7, 22], we view it
as essential for testing high-Complexity settings that are diffi-
cult to safely replicate in the real world. This requires revis-
iting conventional assumptions, such as that humans are non-
reactive to the robot [4, 5, 17, 19, 23, 37], which is unrealistic
since most robots are large enough to be observed [29]. Thus,
simulation should focus on visible robot settings, leveraging
metrics and considerations of users’ perceptions [21, 27, 35]
to compare algorithms’ social performance.
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