
Handling Intentional Obstructions in Social
Navigation using Foundation Models

Einav Shpiro
Computer Science Department

Bar Ilan University, Israel
Email: einav.shenwald@live.biu.ac.il

Reuth Mirsky
Computer Science Department

Bar Ilan University, Israel
Email: mirskyr@cs.biu.ac.il

Abstract—One of the most studied interactions in social nav-
igation is a collision between a human and a robot. Most of
these studies focus on collision avoidance: shifting away from
close pedestrians or staying still until the conflict is resolved.
However, to act socially, avoidance is not always the desired
behavior. Consider a staff member in a hospital blocking a
delivery robot’s path to type in a new delivery request. The
robot should not steer away but rather stay put or even get
closer to the person. Our recent research paper provided a novel
perspective on obstructions in social navigation 1. That work
presented a solution named NIMBLE: Navigational Intentions
Model for BLocking Estimation and provided a pipeline for
handling intentional obstructions that is general enough to allow
for varying implementations while maintaining a clear inference
process for intentional obstructions. This paper proposes several
approaches to extend NIMBLE using Foundation Models (FM)
to improve human-robot interaction.

I. INTRODUCTION

Service and assistive mobile robots will soon become inte-
gral to our daily tasks. However, there are still many challenges
that need to be overcome. One such challenge is the issue of
obstruction, which refers to a situation where a pedestrian
blocks the path of a robot and prevents the robot from
reaching its goal. In most cases, this interaction is handled
as a by-product of collision avoidance, the common policy
of navigation algorithms that assume that obstruction should
be avoided altogether. The robot should pass smoothly around
people, usually without interacting with them directly [12, 14].
However, obstruction is a common issue that happens regularly
in human interactions, where people often wish to interact
rather than avoid collisions with each other. Similarly, this
interaction should be acknowledged and addressed in human-
robot interactions. Consider a delivery robot in a hospital on
a collision course with a nurse. If the nurse looks directly at
the robot, it is more likely that the nurse wishes to type in a
delivery request into the robot’s interface rather than collide
with it. In this case, the robot should not avoid the situation
but rather help by steering toward the nurse. Additionally,
the robot must also recognize different intentions behind
obstructions to determine the appropriate response. Contrary to
the nurse example, hospitals are also environments known to
be prone to cases of aggressive behaviors [7]. When someone

1Published in Technological Advancements of HRI (TAHRI) 2024, https:
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Fig. 1: Proposed extensions for NIMBLE

approaches the robot intending to damage it, it should move
away quickly or sound an alarm. Lastly, if the person is
looking to take a selfie with the robot, it should probably act
friendlier, either stopping and posing for the selfie or kindly
ignoring it and moving on with its task.

We define obstruction as Shpiro and Mirsky [17]. Given two
agents, an actor (the pedestrian) and an observer (the robot):

Definition 1: An obstruction is a conflict where the actor
intentionally wishes the observer to decrease its speed to zero.

This line of work provides a unique perspective on ob-
struction handling because it deals with unexpected intentions,
potentially unrelated to navigation, but that can affect a mobile
robot’s task [16, 18]. Specifically, Singamaneni et al. [18]
highlighted the importance of context reasoning during a
navigational task. Foundation Models (FMs) excel in context-
dependent tasks and thus have a clear benefit for intentional
reasoning in social navigation. This work investigates methods
to utilize the rapid advancements in Large Language Models
(LLMs) and Vision Language Models (VLMs) to enhance the
obstruction handling pipeline. While FMs were recently uti-
lized in the context of enhancing robot capabilities [4, 19], here
we focus on three tasks specific to navigational interactions:

1) Design: LLMs can enhance the designers’ and devel-
opers’ capabilities by providing suggestions and code
segments. For example, Vemprala et al. [25] examined
GPT in creating high-level functions for robotic use.

2) Perception: VLMs can be used online to improve scene



reasoning and evidence acquisition. For example, in our
obstruction recognition framework, NIMBLE may be
able to be given more accurate observations.

3) Decision-Making: Dynamic decision-making and the
generation of suitable responses are often complex tasks
highly dependent on context. As such, LLMs and VLMs
may be leveraged to analyze a situation and decide on
the desired course of action.

While the first task is an intriguing engineering problem, this
paper focuses on the latter two, as delineated in Figure 1.

II. NIMBLE: NAVIGATIONAL INTENTIONS MODEL FOR
BLOCKING ESTIMATION

Our obstruction deliberation algorithm, Navigational Inten-
tions Model for BLocking Estimation (NIMBLE), consists of
three components for three stages of obstruction detection:

1) Conflict detection predicts for a pedestrian if they are
likely to be on a collision course with the robot.

2) Conflict classification classifies whether the conflict is
intentional when a pedestrian is identified to conflict
with the robot (e.g. if the person is facing the robot).

3) Intention recognition identifies the intentions behind
each detected obstruction using goal recognition. NIM-
BLE recognizes three different intentions: Authorized, a
person with whom an interaction is desired to complete
the task (such as the nurse in the hospital example);
Benign, a person that does not seem to mean harm to
the robot, but an interaction with them will not serve the
robot’s predefined aims; and Malicious, a person aiming
to harm the robot or hinder its task execution.

The system’s functionality is illustrated in Figure 2, depict-
ing the system’s decision points flow. It starts at the top with
continuous data extraction (such as camera inputs), followed
by active evidence acquisition (e.g., pose estimation, speed).
Once a conflict is detected and classified as intentional, the
intention is inferred based on the collected evidence.

NIMBLE leverages computer vision and machine learning
techniques for robust obstruction detection and intention infer-
ence. A deep vision model detects people within the robot’s
environment. Whenever a person is detected, the system an-
alyzes their skeleton data (when available) to assess posture.
Additionally, it gathers distance information to estimate the
person’s velocity. When the person enters the robot’s ”personal
space” [6, 13], these real-time observations are fed into a
Bayesian network. Based on the combined data, this model
classifies the person’s intention (benign, authorized, mali-
cious), enabling the robot to gain valuable insight regarding
the approaching interaction that will help the robot react
appropriately to the given situation.

For enhancing NIMBLE, we suggest incorporating a Vi-
sion Language Model (VLM) within its evidence acquisition
module. This VLM extracts semantic observations, offering
a deeper understanding of the situation beyond raw sensory
data. These enriched observations serve two purposes:

1) Predicting Person Intention: Nimble leverages the
VLM’s insights to predict the person’s intention, inform-
ing the system’s overall decision-making.

2) Informing LLM Reaction Selection: The VLM’s ob-
servations are communicated to the LLM. This context
assists the LLM in selecting the most appropriate reac-
tion based on the specific situation. The chosen reaction
is then converted into predefined tokens representing
actionable options for the robot.

Fig. 2: NIMBLE’s visualization with proposed extensions

III. EXTENDING NIMBLE FOR PERCEPTION

Accurate pedestrian intention recognition is crucial for
robots to safely navigate dynamic environments. Our previous
paper introduced NIMBLE, a baseline solution that leveraged
the hardware capabilities of the Boston Dynamics Spot plat-
form and off-the-shelf algorithms to extract observations about
pedestrians in the robot’s surroundings. To improve NIMBLE’s
perception capabilities, we can utilize advanced solutions and
hardware to achieve more accurate observations. This will also
contribute to improving the accuracy of the intention recogni-
tion component. We employed the advanced object detection
algorithm YOLOv8 [8] for evidence acquisition. Additionally,
a foot detector and keypoints information from heels and toes
were used to determine if a person was intentionally blocking
the robot. However, significant costs and development time
are associated with the deployment of advanced hardware and
cutting-edge solutions. Therefore, we propose exploring VLMs
as an alternative approach. To understand their functionality,
VLMs take an image of the robot’s surroundings as input
and output observations regarding visible pedestrians. These
models can be beneficial when searching for particular evi-
dence that is complex or nuanced (e.g., “does the person seem
to be angry?”). Moreover, LLMs could be used to provide
proactive reasoning: when there is high ambiguity regarding
the intention of a pedestrian, the LLM could generate a query
and proactively ask the person about their intention.



IV. EXTENDING NIMBLE FOR DECISION-MAKING

NIMBLE’s enhanced perception, detailed previously, allows
for a more nuanced understanding of pedestrian intentions.
However, effective social interaction requires translating this
understanding into actions. Hence, we suggest that the recog-
nition process be followed by a complementary action, or
series of actions, suited to the obstructing person’s recognized
intention. Unlike classic collision avoidance, which relies on
objective parameters like distance and velocity, handling ob-
struction requires considering the human factor. When dealing
with people, the robot needs a complex understanding of
the environment and current state to assess the situation and
determine the best response based on the individual’s behavior.
A recent technology well-suited to handling such tasks is
Foundation Models (FMs). These models, trained on vast
amounts of human data, can analyze complex situations using
multiple inputs and offer appropriate responses.

We propose the development of a pre-programmed re-
sponses library that a robot can employ when encountering
an obstruction. These responses will be dynamically selected
by a Large Language Model (LLM) based on the specific
situational context. To enhance the robot’s expressivity during
these interactions, we will explore the utilization of various
communication modalities, including audio, visual, haptic, and
kinesthetic channels (as explored in Su et al. [23]). In this
initial phase of our work, we present several potential reaction
options that can be employed as the robot’s predefined actions:

• Speech synthesis: Utilizing speech synthesis as a re-
sponse modality facilitates smoother communication with
users [11] and has been shown to enhance user compli-
ance in certain situations [1].

• Visual Cues via Light-Emitting Diodes (LEDs): Em-
ploying LEDs to generate visual cues offers an efficient
method for the robot to communicate its intentions[5].

• Human-Inspired Gesture and Movement Generation:
Inspired by human nonverbal communication, the gen-
eration of gestures and movements allows the robot to
effectively convey specific messages [15, 3].

• Legible Movement for Intention Communication: Uti-
lizing clear and intuitive movement patterns for effective
intention signaling [2, 9].

Given the robot’s ability to execute some or all of these
behaviors, this work investigates techniques for prompting the
LLM to generate the optimal course of action. This selection
will be based on a comprehensive analysis of three key factors:
the assigned role of the robot, the environmental setting it
operates in, and the specific situational context it encounters.

V. PRELIMINARY RESULTS

Having established the proposals for improving NIMBLE’s
social interaction capabilities, the following sections present
preliminary results from our experiments. These results pro-
vide initial insights into the effectiveness of the suggested
approach and provide a foundation for further research and
development. In the experiments, a higher-ranked FM (GPT-
4o) was utilized as both LLM and VLM components.

A. Augmenting Perception

We first evaluated the capability of a VLM to extract useful
observations that will enhance the obstruction recognition
process. We used high-quality images representing Benign,
Authorized, and Malicious behaviors (one image per inten-
tion type). Additionally, we utilized images from Shpiro and
Mirsky [17] taken during experiments with a Boston Dynamics
Spot’s camera. Openly available images allowed us to test an
ideal setting in which our robotic platform could capture high-
resolution and precise images. To challenge the VLM’s robust-
ness, we also utilized real images from a robot, typically of
lower quality than the controlled setting images.As expected,
the VLM could not generate correct observations on most of
Spot’s images. We specifically asked the model to output a
JSON format response to eliminate the noise that an FM can
generate by providing cumbersome texts. We further reduced
the possible observations to four main observation types – arm
position, mood, staff member, and suspicious object – as used
in [17]. Given the following prompt, GPT accurately identified
the observations from the high-quality images.

Prompt

You are a service robot and the person in the image
is blocking your way. Give all the possible evidence
regarding the person that will help you to infer the
intention of the person provide your observations in
the following format: {arm position: neutral/offensive,
mood: neutral / upset, is staff member: yes/no, suspi-
cious object: yes/no}. Return your response in a JSON
format. If you can’t observe a parameter, put null

B. Augmenting Decision-Making

In this section, we tested the ability of an LLM to provide
a coherent course of action for every defined situation.

Prompt

Imagine you are a service robot in a hospital setting,
your tasks include transferring medicine to differ-
ent departments in the hospital. During your work,
a pedestrian will block you for one of these three
intentions: Benign a curious person who is interested
in you. Authorized a person (usually a staff member)
who wishes to initiate one of your defined tasks.
Malicious a person with the intention to harm you
or interfere with your work. You, as a service robot,
have the following possible reactions to interact with
people: Speech generate speech that is relevant to the
situation. LED use LED for signaling. Alarm start an
alarm. Move apply one of your possible movements.
Given a situation, you need to supply a dictionary with
the reactions that you need to generate to resolve the
obstruction situation optimally. From now on, please
provide your answers in a JSON format.



Below are some prompts describing a potential obstruction
scenario and GPT’s suggested responses (in gray boxes).

Benign Obstruction

Prompt

A person with a benign intention is blocking you. How
will you react?

{
"Speech": "Hello! I am on duty. Could

you please step aside?",
"LED": "Blinking Blue"

}

Authorized Obstruction

Prompt

A person with an authorized intention is blocking you.
How will you react?

{
"Speech": "Hello! How can I assist

you?",
"LED": "Solid Green"

}

Malicious Obstruction

Prompt

A person with a malicious intention is blocking you.
How will you react?

{
"Alarm": "Activate",
"Move": "Reverse and turn"

}

Ambiguous Obstruction

Prompt

A depressed person is blocking you. How will you
react?

{
"Speech": "Hello. I can see you might

be feeling down. Can I assist you
in any way?",

"LED": "Solid Yellow"
}

GPT was capable of properly responding in most cases,
and even when the situation wasn’t defined in the original
prompt, it generated well. Notably, the responses exhibited
slight variations each time, mimicking natural human con-
versation and making the experience feel more human-like.
This characteristic, along with GPT’s ability to adapt, suggests
exciting possibilities. For instance, a robot encountering a
person displaying signs of distress could leverage a VLM
to observe the emotional state and collaborate with an LLM
to generate an appropriate response, even for unexpected
scenarios that the designers hadn’t originally anticipated.

C. Evaluation Methods Suggestions

One way to quantitatively evaluate the effectiveness of
LLM-generated reactions could be through a user study.
Such a study would contain various scenarios and possible
LLM-generated reactions. Then, users would be asked about
their most preferred response. Evaluating a VLM’s perception
ability in the context of obstructions is challenging due to
a lack of labeled data. However, despite this limitation, we
have identified two possible approaches. First, we can assess
the VLM’s capabilities on datasets not directly related to our
domain but where the possible observations are somewhat rele-
vant. For example, a dataset for classifying violent/non-violent
behaviors ([20]). The second approach involves constructing
a new dataset, either simulated or real-life-based, specifically
designed for our problem definition [24]. The dataset would
consider the interaction of obstructions from the robot’s point
of view. While this approach might be challenging and time-
consuming, it can provide a tailored evaluation for our domain.

VI. CONCLUSION

This paper reports some preliminary results on using foun-
dation models to improve the performance of robots in
obstruction recognition and management as part of social
navigation. The strengths of these approaches shine in such
challenges, where a slightly different context can lead to
different responses. For example, a robot in the middle of
an urgent task might not respond to a benign obstruction the
same way it would when it is not in a hurry.

However, FM use in such settings should be carefully
designed. Most importantly, the tendency of these models to
generate false information or imprecise descriptions can lead
to undesired robot behavior or even raise safety issues [22].
One potential approach is to deploy existing verification and
diagnosis techniques and adapt them to LLM-robot systems
[10, 21] Additionally, given these models’ tendency for ver-
bosity, a balance between a short and concise answer and a
robust one is needed.
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