
Arena 3.5: Advancing Social Navigation by Generating
Collaborative and Highly Dynamic Environments at Scale

Volodymyir Shcherbyna1,∗, Linh Kästner1,2,∗, Huajian Zeng3,
Maximilian Ho-Kyoung Schreff1, Halid Osmaev1, Nam Truong Tran1,

Diego Diaz1, Jan Golebiowski1, Harold Soh2

∗Equal Contribution
1Technical University Berlin (TUB), Germany

2National University of Singapore (NUS), Singapore
3Technical University Munich (TUM), Germany

Abstract—Building upon our previous contributions, this
paper introduces Arena 3.5, an extension of Arena-Bench [1],
Arena 1.0 [2], Arena 2.0 [3] and Arena 3.0 [4]. It is an
iterative extension to Arena 3.0, which additionally includes
automated generation of social environments using text prompts
and generative models. We significantly enhance the realism of
human behavior simulation by incorporating a diverse array of
new social force models and interaction patterns, encompassing
both human-human and human-robot dynamics. The platform
provides a comprehensive set of new task modes, designed for
extensive benchmarking and testing and is capable of generating
realistic and human-centric environments dynamically, catering
to a broad spectrum of social navigation scenarios. In addition,
the platform’s functionalities have been abstracted across three
widely used simulators, each tailored for specific training and
testing purposes. The platform’s efficacy has been validated
through an extensive benchmark and user evaluations of the
platform by a global community of researchers and students,
which noted the substantial improvement compared to previous
versions and expressed interests to utilize the platform for future
research and development. Arena 3.5 is openly available at
https://github.com/Arena-Rosnav.

I. INTRODUCTION

As the integration of human-robot collaboration becomes
increasingly essential in fields such as healthcare, logistics,
and delivery, the necessity for robots to navigate through
dynamic and human-centric environments is paramount.
The realm of social navigation, where robots maneuver
and interact in human-populated settings, is rapidly gaining
attention. Critical factors in navigation include not just safety,
but also operational smoothness, user stress, acceptance,
interaction, and maintaining efficiency. Recent years have
seen strides in social robotics [5],[6],[7] with numerous
research works proposing platforms and approaches for
social navigation and benchmarking.

However, many existing platforms are constrained to
specific planning approaches, either learning-based or
traditional, and exhibit limited extensibility [6]. Simulations

This research / project is supported by A*STAR under its National Robotics
Programme (NRP) (Award M23NBK0053). This research is supported in
part by the National Research Foundation (NRF), Singapore and DSO
National Laboratories under the AI Singapore Program (Award Number:
AISG2-RP-2020-017).

Fig. 1: Extended world and map generation tool using large lan-
guage models (LLMs) and generative models. The core idea is to
generate realistic environments using text prompts. As a result, the
user can incorporate cultural, regional, or architectural differences
into the generation process using the knowledge of the LLM.
This allows for the creation of diverse simulation environments for
training and testing purposes, which is especially useful for social
navigation problems as regional differences can be modeled more
accurately.

often feature overly simplified human behavior models,
leading to a widened simulation-to-reality (sim2real)
gap. Furthermore, the focus on single simulators can
be restrictive due to inherent limitations of individual
simulators. Testing capabilities are also often constrained,
with little environmental randomization or planner diversity.
In our prior work Arena 1.0 [2], we tackled the challenge of
deploying both learning-based and traditional planners within
a unified simulation environment. We expanded this approach
to include the deployment of 2D trained deep reinforcement
learning (DRL) agents in Gazebo simulators, enhancing the
realism of robotic kinematics and reducing the sim2real
gap in Arena 2.0 [3]. Additionally, we integrated an array
of planners and an evaluation pipeline with Arena Bench [1].

However, in environments centered around human activity,
robots must undergo rigorous testing for human-robot
interaction. In these settings, realistic human simulation
is crucial, which makes it necessary to not only model

https://github.com/Arena-Rosnav


Fig. 2: System architecture and modules of Arena 3.0. At its core, the platform consists of map and world generator algorithms,
realistic pedestrian simulation, and comprehensive robot and navigation algorithm suites. The core architecture is fully abstracted from
the simulators, allowing for cross-simulator scenario compatibility, with specific functionalities like RGB-D data available in Unity or
Gazebo, and LiDAR applicable in all three simulators. Additionally, the platform features a training pipeline and an extended version of
the MBF navigation framework to support the development and refinement of navigation approaches. Supplementary modules, such as
the evaluation class and the web-based companion app, provide tools for data analysis and manual scenario creation. Using the provided
API endpoints, the user can extend the platform with new planners (Move Base Flex API), task modes (task factory), social force models
(SFM API), or simulators (simulator-factory). Further, computer vision modules for pedestrian detection and tracking are integrated to
provide pedestrian data for further use.

interactions among humans but also between humans
and robots. These scenarios present new challenges and
opportunities for robots to adapt their behavior and decision-
making processes.

With these considerations, we developed the third iteration
of Arena to provide a comprehensive platform focusing
on advancing social navigation with Arena 3.0 [4], which
compromises an extensive software stack containing multiple
modules and simulation environments focusing on social
navigation. There, we incorporated state-of-the-art social
force models and social interaction patterns and enhanced the
task generator to include tasks tailored for specific situations
like blockages or emergencies, but also dynamically and
randomly generated human-centric environments such as
canteens, offices, or industrial halls, offering a vast array of
training and testing environments. In Arena 3.5, we extend
these scene generation capabilities by including a large
language model and diffusion models to generate limitless
indoor environments at scale. Using this combination, the
user can incorporate cultural and architectural differences
between regions into the simulation to enhance realism.
These functionalities are abstracted in the core module and
are compatible on three simulators: Flatland, Gazebo, and
Unity.

The main contributions of this work are the following:

• Integration of human behavior models, enhancing mod-
ules with human and human-robot interaction forces.

• Development of an extended task generation toolkit,
enabling users to create and design specific worlds, sce-
narios, and tasks for training and testing. This includes
the dynamic and random generation of socially-centered
environments such as canteens, warehouses, or offices.

• Abstraction of core functionalities across three widely
used simulators: Flatland2D for efficient 2D training,
Gazebo for realistic robot kinematics testing, and Unity
for photorealistic training scenarios.

• Provision of comprehensive APIs, facilitating the
straightforward extension of new modules, which in-
cludes social force models, social state machines, and
intermediate planner modules.

• Enhancement of the robot and planning suite. The
planning framework has been advanced to MBF [8],
which offers improved navigation performance and is
extended by an intermediate planner concept for greater
customization of user-developed planners.

• Integration of LLMs and diffusion models to gener-
ate diverse indoor environments using text prompts.
Therefore, we provide a user interface in which the
user can input a textprompt and download the resulting
simulation file.

II. OVERVIEW OF ARENA 3.5

Arena 3.5 consists of several key modules, which include
pedestrian simulation, world and task generation, a training
pipeline, and the integration of planner and robot suites.
It features specific API endpoints for the integration of
self-developed modules and supplementary tools like the
evaluation class or a web-based front end for manual scenario
creation.

A. System Design

Figure 2 outlines the modules of Arena 3.0, which introduced
a core module, denoted as Arena-core, that abstracts function-
alities from three simulators, enabling most functions to run
concurrently across these simulators (subject to limitations
like RGB-D being exclusive to Unity and Gazebo). While



Fig. 3: Data flow of the Generation Stage and the Population Stage. The Generation Stage combines multiple SotA technologies to process
text inputs into a floor plan image and room asset locations. 3D scene graphs are used as an intermediate data structure to divide the
problem into a text transformation task solvable by an LLM, and a graph transformation task solvable by a spatial GNN.The Population
Stage populates the floor plan’s asset zones with 3D models by employing the Asset Placer. A pre-built semantic vector Model Database
is queried for a related model, which is arranged into the zone by a Fitter algorithm. After a final post-processing step, the end result is
a finished environment consisting of 3D walls and models.

all simulators were already available and could be selected in
the previous version of Arena, only basic functionalities such
as loading an empty world, spawning a robot, or loading ob-
stacles were provided and the user had to implement further
functionalities for each simulator individually. In contrast,
Arena 3.0 introduces the complete abstraction of all functions
to completely automate processes making it possible to
include new functions across all simulators simultaneously by
only extending the core module. This design also enhances
comparability of approaches and interoperability, e.g., for
algorithms trained in a 2D simulator and later validated in
Gazebo. A vital component of this system is the crowd
and human simulation, incorporating various advanced social
force models, social interactions patterns, and varying human
types. Using the improved map and task generators, users can
generate diverse environments in socially-centric settings like
canteens, offices, or warehouses, with each episode offering
variation through our map generators. Pre-built worlds, such
as a replica of the National University of Singapore campus
or hospitals, are also available for loading. This variety en-
ables users to design highly specific or randomized scenarios
for both qualitative and quantitative testing and validation.
Furthermore, the robot and planner suite was extended of-
fering a wide range of options. Additional modules, like the
extended navigation stack and training pipeline, are provided
to develop and fine-tune navigation strategies. Furthermore,
we also included computer vision approaches such as YOLO
[9] to detect and track humans. Furthermore, the companion
Webapp Arena-web [10] has been extended and adapted
significantly to ensure that all new functions and modules
of Arena 3.0 were compatible with the Webapp. It is thus
denoted as Arena-Web-v2. In addition, Arena 3.5 introduces
an extension to the world generation module using generative
models, which is denoted as Arena-gen. For a more detailed
explaination about the core features of Arena 3.0, we refer
to our previous work [4]. In the following, the additional

world and map generation module using Arena-gen will be
explained in more detail.

III. WORLD AND MAP GENERATION

Arena 3.5 introduces world and map generation using text
prompts and generative models. Figure 3 illustrates the sys-
tem design of our approach. Figure 4 showcases exemplary
worlds generated using our platform. For a demonstration
of worlds generated using text prompts, we refere to our
supplementary video, which is also made available online.

A. System Design

Our generation process consists of a 2-stage pipeline, a
generation stage and a population stage. Generation uses
an LLM that transforms natural language prompts into a a
machine-readable graph. This graph is used in GNN inference
to produce (1) an annotated floor plan image, and (2) asset
regions placed within the rooms. During populations, the
space of the assets is filled with models from a semantic
model database. The floor plan, together with all placed
models, is transformed into a final 3D environment that
can be loaded by a simulator. Subdividing the process in
this manner allows us to exploit the full extent of the
expressiveness of the generative model during generation
and then solving the model-populating sub-problem using
more modular semi-classical approaches. The system design
is illustrated in 3.

1) Dataset: Our dataset consists of (3DSG, floor plan
image) pairs that are used to train our GNN. The samples
are based on the CubiCasa5K [11] dataset, which contains
almost 5000 suitable real-world floor plan scans. The pro-
vided CubiCasa5K data processing detects the room and
object segmentations using pre-trained CNNs, which we use
as a base for our own data processing. We extract the 3DSG
by (1) filtering and re-categorizing assets, (2) classifying
doorways as either inter-room or external, (3) building a room
connectivity matrix from inter-room doorways, (4) assigning



Fig. 4: Different map and world generator modes on three simulators. The map and world generation is abstracted from the simulators
making the creation of worlds and scenarios unified across all simulators. This provides the ability to train and test the same agents on
different simulators leveraging the strength of each simulator.

the remaining assets to the sub-graph of the containing
room. The result is a hierarchical graph in our 3DSG format
paired with a cleaned floor plan image for direct insertion
of our dataset. We calculated a series of graph metrics and
annotation statistics to verify the diversity of our produced
dataset.

2) LLM: The purpose of our LLM is to transform a
user input describing any indoor environment into a valid
3DSG yaml file. For our narrow use case, fine-tuning an
existing pre-trained LLM implementation is the most direct
approach to achieve both, a high understanding of user input
and a conforming model output. Code completion LLMs
are a popular use case that is the most suited for our
objective, leading us to choose DeciCoder [12] based on
the StarCoder [13] dataset. Fine tuning was performed on
a hand-annotated dataset verbally describing scene graphs.

3) GNN: The core module of the generation stage is
the GNN that creates the final floor plan and asset regions
from an intermediate 3DSG. We base our GNN on the
state-of-the-art HouseDiffusion [14] model, which generates
room/dorway segmentations from RPlan room-connectivity
graphs. It uses graph transformers and multi-head attention
for input-constrained continuous denoising in tandem with
entropy-oriented discrete denoising, resulting in significant
improvements over previous models in realism, diversity, and
input conformity. The solution offered by HouseDiffusion
roughly corresponds to solving the generation problem for
the 3DSG upper half. We extend the architecture in multiple
ways to solve our wider problem.

4) Asset Placement: The main addition is the placement
of assets defined in a room node sub-graph within the room
vertex boundaries. We realize this as a parallel continuous
denoising process to the existing room denoising. Processing
is performed on each room and associated sub-graph indi-
vidually. Doorways are treated as other assets for the new

attention masks, but are not subjected to the asset denoising
themselves. Assets are initialized as random quadrilaterals
and undergo the same discrete denoising process as rooms.
Corresponding continuous constraints are (1) appropriate size
for asset type, (2) full containment within the room, (3) no
overlap with other assets.

B. Population Stage

Once the generation stage is completed, the generated entities
are spawned and orgnized during the population stage to
create the 3D simulation environment. We use a model
database as a natural language queriable vector database
containing references to models and associated meta data.We
build the database by recursively parsing a directory structure
containing models and annotation, then generating (1) a
Unity Asset Bundle, and (2) a queriable vector database.
Build and Query functionalities are exposed programatically
through a Python module API. Additionally, we provide a
unified command line interface (CLI) that is wrapped and
integrated into ROS [15][16] with rosrun scripts.

IV. CONCLUSION

In this paper, we introduced Arena 3.5, an iterative im-
provement to our previous version Arena-Bench and Arena
1.0, Arena 2.0, and Arena 3.0. In this version, we extended
the existing map and world generator with the capability to
generate diverse simulation worlds from user text prompts.
Therefore, our approach consists of an LLM to interpret and
process the text prompt and provide it to a difussion model to
generate meaningful simulation worlds. As a result, the user
can now add a diverse range of cultural and architectural
differences into the text prompt to generate a large variety of
simulations for training and testing purposes. The platform
also integrates realistic pedestrian movements and social



force modeling, including human-human and human-robot
interactions.

ACKNOWLEDGEMENTS

This research / project is supported by A*STAR under its Na-
tional Robotics Programme (NRP) (Award M23NBK0053).
This research is supported in part by the National Research
Foundation (NRF), Singapore and DSO National Labora-
tories under the AI Singapore Program (Award Number:
AISG2-RP-2020-017).

REFERENCES

[1] L. Kästner, T. Bhuiyan, T. A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun et al., “Arena-bench:
A benchmarking suite for obstacle avoidance approaches in highly
dynamic environments,” IEEE Robotics and Automation Letters, vol. 7,
no. 4, pp. 9477–9484, 2022.

[2] L. Kästner, T. Buiyan, L. Jiao, T. A. Le, X. Zhao, Z. Shen, and J. Lam-
brecht, “Arena-rosnav: Towards deployment of deep-reinforcement-
learning-based obstacle avoidance into conventional autonomous nav-
igation systems,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 6456–6463.

[3] L. Kästner, R. Carstens, H. Zeng, J. Kmiecik, T. Bhuiyan, N. Khor-
sandhi, V. Shcherbyna, and J. Lambrecht, “Arena-rosnav 2.0: A de-
velopment and benchmarking platform for robot navigation in highly
dynamic environments,” in 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 11 257–
11 264.

[4] L. Kästner, V. Shcherbyna, H. Zeng, T. A. Le, M. H.-K. Schreff, H. Os-
maev, N. T. Tran, D. Diaz, J. Golebiowski, H. Soh, and J. Lambrecht,
“Arena 3.0: Advancing social navigation in collaborative and highly
dynamic environments,” Robotics Science and Systems 2024.

[5] N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh,
M. Hussein, A. W. Gupta, M. Kapadia, and M. Vázquez, “Sean 2.0:
Formalizing and generating social situations for robot navigation,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 047–
11 054, 2022.

[6] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” arXiv
preprint arXiv:2306.16740, 2023.

[7] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059.

[8] “Move Base Flex,” https://github.com/magazino/move_base_flex, ac-
cessed: 2024-01-22.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[10] L. Kästner, R. Carstens, L. Nahrwold, C. Liebig, V. Shcherbyna,
S. Lee, and J. Lambrecht, “Demonstrating arena-web: A web-based
development and benchmarking platform for autonomous navigation
approaches,” Robotics: Science and Systems (RSS), 2023.

[11] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, and J. Kannala,
“Cubicasa5k: A dataset and an improved multi-task model for
floorplan image analysis,” CoRR, vol. abs/1904.01920, 2019. [Online].
Available: http://arxiv.org/abs/1904.01920

[12] DeciAI Research Team, “Decicoder,” 2023. [Online]. Available:
https://huggingface.co/deci/decicoder-1b

[13] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii,
T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier,
J. Monteiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H.
Yee, L. K. Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang,
R. Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca,
M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh,
S. Luccioni, P. Villegas, M. Kunakov, F. Zhdanov, M. Romero, T. Lee,
N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao,

M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt,
D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M.
Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra, and H. de Vries,
“Starcoder: may the source be with you!” 2023.

[14] M. A. Shabani, S. Hosseini, and Y. Furukawa, “Housediffusion: Vector
floorplan generation via a diffusion model with discrete and continuous
denoising,” 2022.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[16] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in
the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074

https://github.com/magazino/move_base_flex
http://arxiv.org/abs/1904.01920
https://huggingface.co/deci/decicoder-1b
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

