
Topology-Guided ORCA: Smooth Multi-Agent
Motion Planning in Constrained Environments

Fatemeh Cheraghi Pouria∗§, Zhe Huang†§, Ananya Yammanuru‡ §, Shuijing Liu† and Katherine Driggs-Campbell†
∗ Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: fatemeh5@illinois.edu

† Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Email: {zheh4, sliu105, krdc}@illinois.edu
‡ Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: ananyay2@illinois.edu

§denotes equal contribution as the first author

Abstract—We present Topology-Guided ORCA as an alter-
native simulator to replace ORCA for planning smooth multi-
agent motions in environments with static obstacles. Despite
the impressive performance in simulating multi-agent crowd
motion in free space, ORCA encounters a significant challenge
in navigating the agents with the presence of static obstacles.
ORCA ignores static obstacles until an agent gets too close to an
obstacle, and the agent will get stuck if the obstacle intercepts an
agent’s path toward the goal. To address this challenge, Topology-
Guided ORCA constructs a graph to represent the topology of the
traversable region of the environment. We use a path planner to
plan a path of waypoints that connects each agent’s start and goal
positions. The waypoints are used as a sequence of goals to guide
ORCA. The experiments of crowd simulation in constrained
environments show that our method outperforms ORCA in terms
of generating smooth and natural motions of multiple agents
in constrained environments, which indicates great potential of
Topology-Guided ORCA for serving as an effective simulator for
training constrained social navigation policies.

I. INTRODUCTION

There have been groundbreaking advancements in social
navigation in recent years thanks to the reinforcement learning
scheme with effective simulators for planning crowd mo-
tion [5]. In particular, Optimal Reciprocal Collision Avoidance
(ORCA) has been prevalent for multi-agent motion planning
in crowd simulation due to their robust capabilities to compute
collision-free trajectories for a large number of agents [8, 3, 2].
However, many social navigation algorithms are investigated
in free open space setting, which does not hold in many
real-world applications, since many mobile robots serve in
indoor environments, for example restaurants and hotels. We
argue that this is due to the fact that ORCA, as one of
the predominant human agent policies in simulation, is not
able to effectively handle constrained environments with static
obstacles. The agents taking ORCA as their motion policy
suffer from a lack of feasible and smooth trajectories to move
around static obstacles in constrained environments [6]. If any
static obstacle intercepts an agent’s path, there is a chance that

the agent does not sense the presence of the obstacle until it
gets too close to be able to move around it.

To address this limitation, we introduce Topology-Guided
ORCA, which uses path planning in constrained environments
to guide ORCA policy. We apply Medial Axis Transform
to generate a topological graph of the traversable region in
the constrained environment. With respect to each agent, we
augment the graph by finding the collision-free edges between
the nodes of the topological graph and the agent’s start and
goal positions. We use the augmented graphs to perform path
planning to generate waypoints which serve as a sequence of
goals for ORCA policy of the agent. We conduct crowd sim-
ulation experiments in constrained environments of different
settings. We show that Topology-Guided ORCA consistently
outperforms ORCA, and exhibits natural and reasonable crowd
motion with the presence of static obstacles. We believe that
Topology-Guided ORCA is a promising multi-agent motion
planning method which can provide high-quality simulation
data for training social navigation policies in constrained
environments.

II. PRELIMINARIES

Velocity Obstacle (VO) methods have attracted broad atten-
tion over decades due to their ability to effectively plan multi-
agent motions. VO was first introduced by Fiorini and Shiller
[4] to define a first-order approximate set of robot’s velocities
that may result in a collision during the navigation time
horizon. As a result, moving agents should select velocities
outside of that set to ensure collision-free navigation.

As an extension of VO, Van den Berg et al. [7] developed
the Reciprocal Velocity Obstacles (RVO) method to tackle the
velocity oscillation problem when two agents move toward
each other with opposite velocities. In addition, RVO only
considers agents and obstacles within a predefined neighbor
region to boost computation speed.

Developed along this line of work, Optimal Reciprocal
Collision Avoidance (ORCA) addresses multiple decision-
making entitiesVan Den Berg et al. [8]. ORCA solves a low-
dimensional linear program problem to find agents’ collision-
free velocity. They define an agent’s preferred velocity as the
velocity at which the agent reaches its destination, given that
no other agents are in the way. The issue with this preferred ve-
locity is that it is an internal state and not observable by other
agents. Thus, an optimization problem with convex constraints
should be solved to find the closest possible velocity to the
preferred one. Constraints are generated from the intersection
of 2-D planes demonstrating admissible velocities for each
pair of agents.

According to Van Den Berg et al. [8], for a given agent A,
ORCA solves the following optimization problem to establish
A’s velocity as close as possible to its preferred velocity:

vnewA = argmin
v∈ORCAτ

A

∥v − vprefA ∥

When two moving agents which are following the same
motion policy get close to each other, the optimization problem
presented above is guaranteed to have feasible solutions for
both agents. Hence, the agents deviate from each other and no
collision occurs. However, when dealing with static obstacles,
the moving agent is the only one responsible for adjusting the
velocity and avoiding collision. Van Den Berg et al. [8] states
that the complement of the velocity obstacle for the agent
and static obstacle is non-convex, which disallows us to apply
linear programming. Therefore, the agent will not collide with
the obstacle but there is a chance that it gets stuck behind it
and does not move around.

This problem is also mentioned by Pérez-D’Arpino et al.
[6]. They indicate that despite the advantages of using ORCA
to simulate crowded and multi-agent scenarios, it suffers from
not being able to provide trajectories that require a turn, such
as going around a static obstacle. Given that, getting stuck
behind the obstacle wall or encountering concave obstacles
makes the goal invisible and results in agent’s inability to
navigate through the environment. Pérez-D’Arpino et al. [6]
overcomes this limitation by decomposing the environment
into specific layouts and regions of initial and goal positions,
allowing the ORCA to navigate agents within these predefined
layouts. However, this approach generates feasible trajectories
by ORCA; the freedom of agents to choose their start and goal
positions arbitrarily anywhere in the traversable environment
is restricted. Another drawback of ORCA is revealed when
a large number of agents encounter or get close to each
other. Due to the dense environment and linear constraints that
make ORCA more conservative, agents’ velocities might drop
or no feasible solution might be found. Arul and Manocha
[1] proposed V-RVO method that tends to accelerate the
performance in such environments. To alleviate mentioned
problems we aim to use a topological graph to represent the
environment and guide ORCA as our motion planner.

III. METHODOLOGY

ORCA agents can get stuck when a static obstacle is on
their straight paths toward their goals, as ORCA may ignore
the obstacle until the agents move too close to be able to turn
around. Thus, we propose Topology-Guided ORCA to direct
ORCA agents to move around static obstacles. In contrast to
ORCA which uses fixed goals for the agents, Topology-Guided
ORCA plans a path between start and goal positions of the
agents, and sets the goal of the agents as the path waypoints in
sequence. To plan an effective path for agent motion guidance,
we represent the traversable region of the environment with a
graph composed of two parts: a topological part which only
depends on the environment, and an augmentation part which
is agent-specific.

Topological Graph. To help navigate agents around the
obstacles, a topological graph needs to be built to reflect the
connectivity of the free space, and to accurately represent all
homotopic paths around the obstacles. Additionally, the speed
of topological graph construction should meet the needs for
online planning. In this work, we construct the topological
graph G = (V,E) with a Medial Axis graph [9], of which an
example is presented in Figure 1a.

Augmented Graph. At the beginning of the simulation,
each agent is assigned an arbitrary start s and goal g position.
Once an agent’s start and goal positions are set, we augment
the topological graph for each agent individually by adding
{s, g} and draw edges {(u, v)|u ∈ {s, g}, v is visible from u}
(see Figure 1b). In this context, a visible node refers to a node
not occluded by obstacles that can be connected to the start or
goal using a straight line. The motivation for having a separate
graph for each agent is that ORCA usually selects a straight
path toward the goal, assuming no other moving or static
agents intercept the path. Each agent’s graph is constructed
such that if no obstacle is in the middle of the straight path
from s to g, an edge connecting s to g to the graph is added.

Planning for Guidance. We perform a shortest-path search
from s to g on the augmented graph to generate waypoints.
Waypoints are a sequence of augmented graph nodes, with s
as the first node and g as the last node. We then use ORCA to
navigate the agent between waypoints in sequence. Once an
agent reaches its goal, a new goal is chosen, a new augmented
graph is constructed, and the process is repeated.

IV. RESULTS AND DISCUSSION

A. Simulation environment

Our simulation setup includes 4 moving agents and 3
rectangular obstacles. Considering agents’ radius and a margin
equal to agents’ radius around obstacles, 80 Percent of the area
in the whole environment is traversable.

This paper aims at addressing the limitations of ORCA in
environments with static obstacles. To clearly illustrate the
difference between our method and ORCA, we first focus on
static obstacles in an environment with fewer agents. Static
obstacles are randomly generated. Moreover, we investigate
the same obstacle arrangement with 10 agents.

(a) Topological graph (b) Augmented graph

Fig. 1: (a) The graph representation of an environment in-
cluding three static obstacles and (b) An agent’s augmented
graph. The green circle is the agent, and red lines show its path
toward the goal. As one can see, the generated path guides the
agent to move around the obstacles.

The following subsection provides an overview of the
metrics we consider to evaluate our method. We evaluate these
metrics on 200 episodes, each consisting of 196 frames.

B. Evaluation metrics

To evaluate the performance of our proposed method, we
designe a filter that takes into account agent velocities and
outputs an array including each agent’s status in each frame.
An agent’s status in a frame demonstrates whether it is getting
stuck or moving naturally. A significant drop in velocity in the
middle of the way is interpreted as getting stuck, which can be
caused by either getting too close to static obstacles or moving
in a crowded area. Moreover, the frame number in which an
agent reaches its goal is also recorded. We quantify the filter
output with the following metrics:

1) Average agent velocity per path: An agent’s velocity is
defined as the total distance traveled by the agent until
it reaches its goal, divided by the number of frames
required to complete this path. To calculate this metric,
we average all agents’ velocities across all episodes.

2) Average percentage of mutual frozen frames per episode:
A frame is called frozen if the agent is stuck. This metric
computes the percentage of mutual frozen frames (i.e.,
all agents are stuck in the same frame) per episode and
averages them across all episodes.

3) Average percentage of frozen frames per path: This
metric computes the percentage of frozen frames per
each agent’s path and averages them across all episodes.

4) Average number of occupied paths out of average num-
ber of paths per episode: An occupied path is defined as
a path including 30 consecutive frozen frames, equiv-
alent to being frozen for more than 15 percent of an
episode. This metric calculates the number of occupied
paths and the total number of paths for each episode and
averages them across all episodes.

5) Percentage of stuck agents: A stuck agent is defined as
an agent that has not reached its goal from the beginning
of the episode till the end and has a velocity less than

one-third of average velocity. This metric computes the
percentage of stuck agents out of the total number of
agents across all episodes.

These metrics are computed over each path from start to goal.
Once an agent reaches its goal, its index is updated, and
metrics are computed again for the new path toward the new
goal.

C. Results

Quantitative results of our algorithm and ORCA are reported
in Table I. The results show the advantages of using an
environment’s graph to guide ORCA in both scenarios with
different numbers of agents. However, planning through a
more crowded environment, such as having 10 agents instead
of 4, worsens metrics for both methods, Our methods still
perform better than ORCA in a more crowded scenario.

In general, as the average agent velocity shows, agents
following our framework acquire higher velocities, indicating
that their paths are less intercepted. According to the average
percentage of mutual frozen frames per episode, our method
reduces the likelihood of all agents being stuck in the same
frame. Considering the average percentage of frozen frames
per path, agent paths also include fewer frozen frames, mean-
ing their velocities drop less often. Based on the average
number of occupied paths out of average number of paths
per episode and the percentage of stuck agents, our proposed
method results in fewer occupied paths and fewer stuck agents
per episode. A lower number of stuck agents indicates a higher
probability of completing paths within a single episode as the
total number of paths in the fourth metric shows.

Overall, our method performs well in a four-agent environ-
ment, as the average velocity is higher and all other metrics are
lower compared to ORCA. The only issue of ORCA in a not
crowded environment is the presence of static obstacles. Thus,
we show agents following our method are able to move around
obstacles more efficiently compared to ORCA. Regardless
of the motion planning method, more crowded environment
leads to lower average velocity and higher metrics, which
is reasonable since agents encounter more often and need to
adjust their velocity to pass by each other without collision.
Nevertheless, our proposed method surpasses ORCA in a
crowded environment as well.

V. CONCLUSION AND FUTURE WORK

ORCA can simultaneously navigate multiple agents toward
their goals in a real-time and collision-free manner. However,
challenges arise regarding environments with static obstacles,
which prevents ORCA from being effective in simulating
crowd motion in constrained environments. The major problem
occurs in the presence of static obstacles when ORCA is the
only motion policy responsible for motion planning. In this
case, the ORCA agent will likely get stuck behind an obstacle
while moving toward its goal position. This paper alleviates
this problem by guiding ORCA agents using the environment
topology. The constrained crowd simulation experiments show
that agents following our Topology-Guided ORCA maintain

Metrics 4 agents 10 agents

MA ORCA MA ORCA

Agent velocity ↑ 17.66 15.48 15.34 13.9
% of mutual frozen frames per episode ↓ 7.92 15.03 17.29 23.65
% of frozen frames per path ↓ 6.05 8.54 12.39 14.38
of occupied paths out of ↓ # of paths per episode ↑ 0.27/19.11 1.15/17.27 2.84/35.45 4.63/33.12
% of stuck agents ↓ 0.05 1.74 0.28 2.85

TABLE I: quantitative metrics for 4 and 10 agents over 200 episodes

higher velocities and fewer frozen frames moving towards
their goals, and occupied paths and stuck agents are less
likely to happen, which indicates great potential for simulating
constrained crowd motion and for training constrained social
navigation policies.

In future work, this method can be integrated into more
complicated environment setups, such as increasing the ob-
stacle density or adding polygon or concave obstacles, hall-
ways, and doors to the environment. We plan to investigate
the effects of using probabilistic roadmap (PRM) as another
topological graph construction method and exploring how this
representation of traversable environment can help ORCA
during navigation.

VI. ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grant No. 2143435.

REFERENCES

[1] Senthil Hariharan Arul and Dinesh Manocha. V-rvo: De-
centralized multi-agent collision avoidance using voronoi
diagrams and reciprocal velocity obstacles. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8097–8104. IEEE, 2021.
doi: 10.1109/IROS51168.2021.9636618. URL https://
ieeexplore.ieee.org/document/9636618.

[2] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre
Alahi. Crowd-robot interaction: Crowd-aware robot nav-
igation with attention-based deep reinforcement learning.
In 2019 international conference on robotics and automa-
tion (ICRA), pages 6015–6022. IEEE, 2019. doi: 10.
1109/ICRA.2019.8794134. URL https://ieeexplore.ieee.
org/document/8794134.

[3] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P
How. Socially aware motion planning with deep re-
inforcement learning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 1343–1350. IEEE, 2017. doi: 10.1109/IROS.
2017.8202312. URL https://ieeexplore.ieee.org/document/
8202312.

[4] Paolo Fiorini and Zvi Shiller. Motion planning in dy-
namic environments using velocity obstacles. The interna-
tional journal of robotics research, 17(7):760–772, 1998.
doi: 10.1177/027836499801700706. URL https://journals.
sagepub.com/doi/10.1177/027836499801700706.

[5] Shuijing Liu, Peixin Chang, Zhe Huang, Neeloy
Chakraborty, Kaiwen Hong, Weihang Liang, D Liv-
ingston McPherson, Junyi Geng, and Katherine Driggs-
Campbell. Intention aware robot crowd navigation
with attention-based interaction graph. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pages 12015–12021. IEEE, 2023. doi: 10.1109/
ICRA48891.2023.10160660. URL https://ieeexplore.ieee.
org/document/10160660.

[6] Claudia Pérez-D’Arpino, Can Liu, Patrick Goebel,
Roberto Martı́n-Martı́n, and Silvio Savarese. Robot
navigation in constrained pedestrian environments us-
ing reinforcement learning. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1140–1146. IEEE, 2021. doi: 10.1109/ICRA48506.
2021.9560893. URL https://ieeexplore.ieee.org/document/
9560893.

[7] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Re-
ciprocal velocity obstacles for real-time multi-agent navi-
gation. In 2008 IEEE international conference on robotics
and automation, pages 1928–1935. Ieee, 2008. doi:
10.1109/ROBOT.2008.4543489. URL https://ieeexplore.
ieee.org/document/4543489.

[8] Jur Van Den Berg, Stephen J Guy, Ming Lin, and
Dinesh Manocha. Reciprocal n-body collision avoid-
ance. In Robotics Research: The 14th International
Symposium ISRR, pages 3–19. Springer, 2011. doi:
10.1007/978-3-642-19457-3 1. URL https://link.springer.
com/chapter/10.1007/978-3-642-19457-3 1.

[9] T. Y. Zhang and Ching Yee Suen. A fast parallel algorithm
for thinning digital patterns. Commun. ACM, 27:236–239,
1984. doi: 10.1145/357994.358023. URL https://dl.acm.
org/doi/10.1145/357994.358023.

	Introduction
	Preliminaries
	Methodology
	Results and discussion
	Simulation environment
	Evaluation metrics
	Results

	Conclusion and future work
	Acknowledgment

