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Abstract—Navigation is one of the essential tasks in order for
robots to be deployed in environments shared with humans.
The problem becomes increasingly complex when taking in
consideration that the robot’s behaviour should be suitable to
humans. This is referred to as social navigation and it is a
cognitive task that us humans pay little attention to as it comes
naturally. Since crafting a model of the environment dynamics
that faithfully characterises how humans navigate seems an
impossible task, we look on the side of learning-based approaches
and especially reinforcement learning. In this paper we are
interested in drawing conclusions on the vast number of design
choices when training a navigation agent using reinforcement
learning. To make this educated decisions, we offer a short survey
on recent papers addressing the social navigation problem using
learning-based algorithms. Additionally, we take note of what
worked best in our testing.

I. INTRODUCTION

Despite decades of research in social robot navigation,
basic issues such as robots freezing unnecessarily [50] or
exhibiting socially unwelcome behaviors remain largely un-
solved. Machine learning methods have recently matured to
the point of providing new, interesting solutions to various
perception, decision-making and control problems in robotics.
These methods could potentially contribute therefore to tackle
those unsolved problems in social robot navigation.

Reinforcement Learning (RL), in particular, provides a
means to approach problems such as social navigation where
the desired behaviour is difficult to define formally and explic-
itly. Social navigation adds an additional layer of complexity
due to the need to interpret and respond to nuanced human
behaviors and dynamic environments. The problem is, existing
RL algorithms are still very sensitive to design choices, which
can make the difference between a very effective and a
completely ineffective solution. And these practical aspects are
largely overlooked in existing literature reviews on the topic.

The goal of this paper is to start filling this gap by providing
an initial review of these practical aspects, together with some
simple simulation experiments to compare their effects on
the convergence of state-of-the-art RL algorithms, and on the
applicability of the resulting solution in simple navigation
scenarios. In order to gain additional insights on existing
approaches, we decided to widen the scope of our literature
review to include nonsocial robot navigation scenarios.

In Section II we offer a formal introduction to the problem
and discuss various design choices. In Section III we survey
various RL papers that relate to navigation. We present a

taxonomy over different applications and offer analysis and
cross-referencing between different problem formulations, en-
vironment design options and learning configurations. We
conclude by reporting on experiments conducted in our own
testing scenario and analysis of the most effective strategies
in Section IV.

II. PROBLEM STATEMENT

The navigation problem can be mathematically formulated
as a Markov decision process (MDP) defined by the tuple
(S,A,P,R), where S, A are the state space and action
space respectively, P(s, a, s′) is the transition probability
from state s ∈ S to state s′ ∈ S via action a ∈ A and
R : S ×A → R is the reward function. The manner in which
the components of the MDP are defined, describe a specific
task. The transition probabilities are not considered explicitly
in this work, however they can have a major effect on the
complexity of the task. Generally, the navigation task involves
an agent moving in a crowded environment with a given goal
position. We use the term agent to refer to the artificial system
and the term crowd to refer to people and obstacles in the
environment.

A. State Space

In navigation, the state s ∈ S includes the environment
and its components. It can be fully described by positions
and velocities of the agent p⃗ =

[
px, py

]
, ⃗̇p =

[
ṗx, ṗy

]
, goal

g⃗ =
[
xg, yg

]
, static obstacles and members of the crowd

c⃗i =
[
xi, yi

]
, ⃗̇ci =

[
ẋi, ẏi

]
. However, it is possible to

introduce another level of abstraction in terms of observation
space O which is an arbitrary form of representing S. For
navigation, O can be implemented as relative Cartesian coor-
dinates for crowd and goal. It is possible to convert this into
polar coordinates,

[
xg, yg

]
→

[
rg, θg

]
meaning distance and

orientation. A third option would be to use Light Detection
and Ranging (LiDAR) observation that expresses the distance
of the agent to a number of preset directions. Assuming a
360◦ FOV and N LiDAR rays the observation could look
like the following o = {di 360

N
◦ | i ∈ {1, ..., N}} ∈ RN

+ .
The information of the goal position and agent velocity would
be appended to this kind of observation. Finally, a general
representation of the state space comes in form of images
with arbitrary resolution, sometimes also as maps.



TABLE I
PAPERS BY APPLICATION

Application References

UAV [22], [40], [24], [66], [21], [55], [9], [33], [11]

USV [61], [53], [59], [58], [28], [34] [7], [41], [35], [32]

UGV
[6], [8], [29], [19], [31], [26], [42], [67], [4], [23], [15],
[14], [60], [27], [57] [38], [52], [64] [48], [37], [62],
[2], [54], [12] [13], [3], [18], [43], [49], [17], [10], [63]

B. Action Space

The action space A refers to the motion control applied
to the agent. Naturally, the change in position is described
either by the velocity or acceleration. Cartesian acceleration
and velocity are given as ⃗̈p =

[
p̈x, p̈y

]
and ⃗̇p =

[
ṗx, ṗy

]
respectively. Another option is linear velocity and angular
change (LVAC)

[
ṙ, θ

]
. Often, their values are bounded by

maximum speed and acceleration, and A can be discrete and
finite.

C. Reward Function

The reward function R mainly reflects how close the agent
is to the goal and to a potential collision. Different definitions
can have surprisingly different outcomes when training a RL
policy. We elaborate on the engineering of R when discussing
the the surveyed papers in Section III-D and while presenting
our own environment in Section IV-A.

III. RELATED WORK

We survey recent papers starting from 2020 and concentrate
on learning-based methods. Firstly, we classify in terms of
application. As mentioned beforehand, our initial purpose is
to make educated guesses on practical aspects of the problem,
in Singamaneni et al. [47] a more general and extensive
survey spanning a wider range of navigation algorithms can be
found. We continue the discussion on a general overview of
environment settings like the observation space, action space
and reward function. Finally, we iterate the employed learning
algorithms and the expected performance.

A. Application-based Taxonomy

While we are predominantly interested in robot navigation
with pedestrians, the term navigation can relate potentially
to non-social Unmanned Ground Vehicle (UGV), Unmanned
Aerial Vehicle (UAV) or Unmanned Surface Vehicle (USV).
In Table I a quantitative distribution of the different papers
by application is shown. We further partition UGV papers
into methods that address navigation in a crowd and multi-
robot systems as seen in Table II. A more practical division
distinguishes between systems tested in the real world, meth-
ods trained with the Gazebo simulation [25, 1] and a few
papers integrating classic approaches, namely path finding and
Dynamics Window Approach (DWA). It is of note, that papers
tested in the real world are first trained inside a simulation.

Most of deep learning navigation papers usually construct
the problem as an agent bounded in a room with a goal and

TABLE II
FURTHER CHARACTERIZATION OF UGV PAPERS.

Tested IRL [6], [8], [29], [19], [31], [42], [23], [14], [38], [12], [3], [18], [10]

Gazebo [6], [8], [42], [23], [57], [38], [48], [37], [2], [13], [17], [10]

Classic [26], [27], [42]

Multi-robot [4], [15], [57], [37], [2], [54], [18], [49], [17]

various obstacles in the room [8, 29, 19, 6, 31, 42, 67, 14].
This makes away with the classical separation in navigation
between global and local planning. There are methods that
directly combine global path finding to learned fine-grained
control [3, 27, 26]. Arguably, all deep learning methods for
navigation can be adapted to use waypoints from a global
planner. Moreover, it is possible to address such problems
strictly with data-based approaches. A practical application
is learning the layout of any home. In [5], an algorithm is
proposed where an implicit map is learned and stored to
pinpoint and navigate to different objects inside an apartment.
This is potentially extensible to all kinds of navigation but
highly ineffective where prior knowledge of the layout of the
environment is known. Of our interest are problems for which
such knowledge exists and if necessary a global planner relays
the waypoints as reference for the control task.

We remark that even though many of the papers investigate
crowd navigation, some simplifications are often made in the
environment. For example, in [23] the initial position of the
robot and obstacles remain the same during all experiments. In
[10, 19], multiple scenarios are generated with randomization
of obstacle position and shape which encapsulates a more gen-
eral problem. Using plausible, hand-crafted, social scenarios
also adds more realism to the situations and can facilitate the
simulation-to-reality (sim2real) transfer. For example, narrow
passages, intersections, and crowded areas are all relevant
instances. To construct such scenarios the use of social-centric
crowd models, e.g. [51, 44, 20], would be crucial.

B. Observation Space

LiDAR observations are used in the majority of the literature
with 21 occurrences. This is due to the fact, that LiDAR
is a very efficient way to get a 360-degree view of the
environment. Compared to images, the information conveyed
is less detailed but much lighter to process. While using
positions and velocities is a simpler representation, it is not
as informative as LiDAR especially w.r.t. obstacle shape and
size. It is used in almost all 13 environments implemented in
the real world and sometimes used in combination with other
observations, especially RGB images.

Most of UAV and USV papers make use of images, given
that LiDAR sensors are rarely applied for such long distances.
In [66, 28] it is mentioned the use of equidistant angles
from which distances are computed as observation but LiDAR
sensors are not explicitly mentioned. Images were used in
multiple occasions for ground robots in the form of maps
[52, 54, 67] and from the robot’s POV [60, 8]. Commonly,
fusion is implemented between RGB-D images and LiDAR
observation [13, 29, 19]. The advantage of employing a RGB



images with a depth channel is the ability to detect thin
obstacles as well as reducing the number of sensor needed.

Position and velocity are used predominantly in multi-robot
systems [17, 49, 18, 2], a few UAV/USV papers and only
one crowd navigation paper [14]. It is the lightest and most
efficient form of representation, which is why it may be more
suitable for demanding applications like multi-robot tasks
where control is applied over an entire fleet of agents. On the
other hand, it might scale inefficiently as the observation size is
directly linked to the number of obstacles in the environment.

C. Action Space

Most commonly LVAC were used, with 36 occurrences
from which 9 are discretized and only 9 papers employ
Cartesian control. This choice is partially explained by the
use of non-holonomic robots (including ships and aircrafts).
In context of social navigation, the majority of papers use
continuous actions for higher flexibility and expressiveness.
Discrete actions are more restrictive but can be learned more
easily by the agent. In some cases, the change in velocity is
unbounded, resulting in unnatural trajectories. Intuitively, in
cases where Cartesian coordinates are used for the observation,
a Cartesian control representation is used and analogously
LVAC define control for polar coordinates representation. We
uphold this relation in our environment implementation as
well.

D. Reward Function

In this study, we observe that each surveyed paper uses its
own definition of the reward function. However we find the
following common components:

1) A terminal task completion positive reward (all papers).
2) A terminal collision negative reward (all papers).
3) A penalty for obstacle proxemics (15 papers).
4) A positive reward for the goal distance (17 papers).
5) An idleness penalty to encourage movement (14 papers).
6) A penalty for big angular changes (14 papers).

These patterns are not exhaustive and in some cases more
complex. Woo and Kim [58] add a path following reward that
helps the agent follow guideline positions, USV papers [28, 61,
34, 7] implement COLREG (Convention on the International
Regulations for Preventing Collisions at Sea) specific rewards.

E. Learning Algorithms

In this study we observe a dominance of Proximal Policy
Optimization (PPO) [46] algorithm with 16 occurrences over
53 papers. Suited for continuous and discrete actions and often
used with images as observation space. Next are Deep Q-
Networks (DQN) [36], Deep Deterministic Policy Gradients
(DDPG) [30] and DuelingDQN [56] with 7, 6 and 5 occur-
rences respectively. Differently from PPO, these algorithms
are off-policy. DQN, DoubleDQN and DuelingDQN make
use of Convolutional Neural Network (CNN) policies and
since they are based on Q-learning, they implement discrete
actions. Finally, Soft actor-critic (SAC) [16], is the most recent
algorithm used and implemented in 3 papers.

The policy configuration often remains that of the popular
libraries. Some papers implement a custom, more complex
architecture. In Yuan et al. [65], a Long Short-Term Memory
(LSTM) is used in conjunction with DoubleDQN. Results
show that the LSTM learns smoother and more natural trajec-
tories compared to vanilla DoubleDeep Q-Networks (DQN)
but convergence is slower due to the added complexity. Han
et al. [19] present an architecture that combines RGB and
LiDAR inputs in order to recreate minimalist 2D depth data.
This data is then passed into a self-state-attention unit able to
handle partially accurate data. The resulting 2D representation
of the data is further processed by a CNN. Naturally, all
methods using image observations make use of CNNs or vision
Transformers to extract features. Moreover, in some cases, 1D
CNN architectures are used to handle 2D LiDAR data.

Papers that extends the problem to moving obstacles have to
integrate memory in their architecture, either with a recurrent
cell (Recurrent Neural Network (RNN), Gated Recurrent Units
(GRU), LSTM) or by stacking past observations as input.

F. Performance
Different units are used to reflect the training curve. Some

papers use the conventional environment steps while some use
the number of episodes which does not explicitly indicate
the number of training transitions. In some cases hardware
dependent or configuration dependent metrics are used. As
mentioned previously a few papers simplify the task resulting
in faster learning, whereas other approaches combine more
complex observations for which pre-trained models are used.
A rough estimate indicates that around a few million transi-
tions are necessary to solve the task with on-policy algorithms
converging faster.

IV. EXPERIMENTS

The purpose of the experiments is an initial evaluation
on the different design choices of the environment and the
learning algorithm.

A. Environment
The environment is strictly defined based on the problem

formulation in Section II, including the various options for O
and A. Initially, we test for a simple navigation task without
a crowd, then implement a static crowd and finally a blind
crowd manifesting constant linear motion. Figure 1(a) presents
an example of a trajectory involving 10 static crowd members.
This environment does not account for obstacles with arbitrary
shape and is limited to non socially-aware scenarios. The goal,
crowd and wall reward functions, rg , rci and rw, depend
respectively on the distance to the goal dg , to the i-th crowd
member dci and to the wall dw, and are defined as:

rg =

{
10, dg < τP ∧ ∥⃗̇p∥ < aMAXT,

−Cg max(d2g, 1), otherwise,

rci =


0, dci > τS,

−10, dci < 2τP,

1− exp(Cc/dci), otherwise,



(a)

0 1 2 3 4 5

·106

−10

−5

0

5

10

Environment Interactions

R
et

ur
n

PPO - Acc.
SAC - Acc.
TRPL - Acc.

(b)

0 1 2 3 4 5

·107

−20

−10

0

10

Environment Interactions

PPO - Acc. & Cart. Obs.
PPO - Acc. & Polar Obs.
PPO - LVAC & LiDAR
SAC - Acc. & LiDAR
SAC - LVAC & LiDAR

(c)

1 2 3 4 5

·107

0

5

10

15

20

25

Environment Interactions

C
ol

lis
io

n
pe

rc
en

ta
ge

0.5 1

0

0.2

0.4

(d)

Fig. 1. (a) Example of successful trajectory from a SAC policy with LiDAR, (b) returns obtained without obstacles, (c) returns obtained in a static crowd
environment, and (d) evolution of the collision rate in the same environment. The legend for (c) and (d) indicates the model’s control and observation types.

where τP = 0.4 m and τS = 1.9 m are the physical and
social distance thresholds, aMAX = 1.5 m/s2 is the maximum
acceleration, and T = 0.1 s is the time step. In addition,
rw is defined similarly to rci using dw, Cg and Cc are set
appropriately so the sum of all rewards is comparable to the
terminal reward for the goal and collision respectively. The
complete reward function is the sum of the components above:

R = rg +
∑
i

rci + rw. (1)

B. Results

As a baseline RL method we use PPO and SAC tested
using the stable-baselines3 [45] library. We test with
another library implemented for developing and evaluating the
TRPL [39] algorithm against PPO and SAC. SAC solves a
maximum entropy RL problem which means that on average,
training is more stable whilst algorithms like PPO are strongly
conditioned by hyperparameters making training less robust.

1) Observation: By default we use Cartesian observations
and acceleration control. The simple navigation task is learned
in less than 1M steps with longer training only improving
control smoothness. For this task PPO learns much faster than
SAC as shown in Figure 1(b). We see a clear hurdle when
adding a static crowd to the environment. In this case, the agent
does not learn a perfectly safe behaviour without collisions as
depicted in Figure 1(d). Quantitatively, the PPO agent crashes
around 12% of times whereas SAC LiDAR models collide
only 1% of the time yielding the highest performance as shown
in Figure 1(c). In contrast, we report no difference in perfor-
mance or learning trend for Cartesian and polar observations.
PPO and TRPL converge to an under-performing agent when
using LiDAR observations with Cartesian representation for
goal and velocity. We observe that the increase in number of
LiDAR rays from the default value of 40, leads to a decrease
in convergence speed and global performance.

2) Control: From testing it is clear that action space has an
influence in training speed. Across different parameters, using
velocity control speeds up training by at least a factor of 3
compared to acceleration control, as represented in Figure 1(c)
for SAC with LiDAR observations. Additionally, PPO LiDAR
works exclusively with LVAC. However, velocity control is
not constrained in terms of acceleration at the moment which
results in unnatural movement. This brings higher returns as

the agent can immediately accelerate to maximum velocity
and stop as it reaches the goal.

3) Reward: The reward function in Equation (1) was de-
veloped incrementally based on performance results. Idleness
feedback was added in conjunction to Equation (1) but only
slowed down training. A negative reward for large angular
changes is irrelevant when acceleration is limited. All other
rewards described in Section III-D were implemented in Equa-
tion (1). In this function we keep the values close to 0 and give
negative rewards consistently based on dg . Using a positive
reward for the distance of the agent to the goal, encouraged
a stalling behaviour close to the goal in order to maximize
the return. Using a linear penalty based on the goal distance
delayed convergence and prevented learning for PPO. The
change of obstacles proxemics from linear −Ccdci to quadratic
Ccd

2
ci and exponential 1 − exp(Cc/dci) has little influence.

However, appropriate weighting of this reward against the goal
distance reward is vital. Finally, the task completion reward
and the collision reward were set to the inverse of each other.
A lower absolute task completion reward compared to the
absolute collision reward slowed down learning. On the other
hand, making the task completion larger than the collision
reward in absolute value increased the number of collisions.

Overall, SAC generalizes well to all variously complex nav-
igation tasks, whereas PPO is more sensitive to environment
design choices. For more complex task formulations, PPO
becomes increasingly challenging to tune. The same trends
hold true for TRPL, but these details have been omitted from
the graphs for better legibility. Initial tests with a non-social
blind crowd suggest robustness in dynamic settings.

V. CONCLUSION

In this short paper we take note of some of the important
and practical aspects of developing a RL method for the
navigation task. We conclude from our testing that for our
broad environment definition, LiDAR state representation with
velocity control and a reward function based on points 1,2,3,4
iterated in Section III-D, the SAC algorithm is able to converge
to a desirable behaviour. In future work, we hope to extend
the analysis for socially-aware RL agents.
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