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Abstract—Navigating mobile robots in social environments
remains a challenging task due to the intricacies of human-robot
interactions. Most of the motion planners designed for crowded
and dynamic environments focus on reaching the goal while
avoiding collisions or local social interactions, but do not explicitly
consider the high-level navigation behavior (avoiding through the
left or right side, letting others pass or passing before others, etc.).
In this work, we present a novel motion planner that incorporates
topology distinct paths representing diverse navigation strategies
around humans. The planner uses a deep neural network model
trained on real-world human motion data to estimate how well a
topology classes imitate the human behavior. Then, selects the
best topology class using it, ensuring socially intelligent and
contextually aware navigation. Our system refines the chosen
path through an optimization-based local planner in real time,
ensuring adherence to desired social behaviors. We evaluate
the prediction accuracy of the network with real-world data
and the navigation capabilities in both simulation and a real-
world platform. Our method demonstrates socially desirable
behaviors, smooth and remarkable performance compared to
other planners.

I. INTRODUCTION

Motion planning in social environments involves global
and local planning. Traditional global planners compute a
plan that only considers static obstacles and a local planner
tries to follow it. Thus, the local planner may find itself
stuck in locally optimal plans that overlook the presence of
dynamic obstacles beyond its planning horizon. This can lead
to different dynamic behaviors that were not considered by the
initial plan, as passing before obstacles or letting them pass.

In addition, social navigation poses the challenge of se-
lecting the desired robot dynamic behavior. While manually
defining a cost based on heuristics is an option, evaluating
social norms and adapting to every possible situation is a very
complex problem. In some scenarios, the robot must make
high-level decisions such as avoiding uncomfortable situations,
not blocking others’ paths, or understanding preferences. For
example, in Fig. 1, the robot faces a crowded scenario where
the decisions are encoded in three topological classes of
trajectories: Light blue is less intrusive with the blue pedestrian
and avoids the pink and the red through the right side; red
avoids them through the left and waits for the blue to pass,
while the other blue trajectory passes after every human

Optimization-based planners designed for social environ-
ments typically fail in local optima [3], do not consider the
dynamism of the environment [5], are designed for non-social
scenarios [4] or are only based on social heuristics [13], and
learning-based approaches that predict the topology class of
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Fig. 1: A scenario of the ETH/UCY dataset. The robot is the
blue disk and the humans future are disks with increasing
transparency. There are three possible topology distinct trajec-
tories. Our method chooses the light blue while the one with
minimum length is the red one.

trajectories either assume the environment is static or are not
prepared for navigation [16, 18]. Other deep learning methods,
such as imitation learning and deep reinforcement learning
[6, 9, 12], only consider local interactions and may fail with
out-of-distribution observations, making them unsafe.

We propose a new supervised learning approach to learn
human navigation preferences in crowded environments. It
assesses how closely the topology class of a queried trajectory
matches human choices, distinguishing between social and
non-social navigation decisions. We use it in a new motion
planner called SHINE (Social Homology Identification for
Navigation in crowded Environments), which infers social
high-level navigation decisions to initialize an optimization-
based planner (LMPCC [3]). In addition, SHINE may reac-
tively replan with new social decisions if the scenario changes
unexpectedly.

II. PROBLEM FORMULATION

We consider scenarios in which a robot must navigate
to a goal, pgoal = (xgoal, ygoal), while ensuring collision
avoidance with humans, represented as disks. We model the
robot’s motion by the deterministic discrete-time non-linear
dynamics xk+1 = f(xk,uk), where xk is the state and uk

the control input at time k. The state contains its position
pk = (xk, yk) ∈ R2. We will use the superscript T when
referring to the collection of variables over T discrete time
steps. For example, pT

k = [pk−T , . . . ,pk] denotes the robot’s
positions over the past T time steps.



The position of the human j is denoted as oj,k =
(xj,k, yj,k) ∈ R2 and the position of the set of M humans
is denoted as Ok = [o0,k, . . . ,oM,k]. We assume that OT

k and
pT
k are known. The state space that we consider for planning

is composed by the workspace and time: X = R2 × [0, T ].
A trajectory is a continuous path through the state space:
τ : [0, 1] → X . The collision-free space describes the state
space without the space occupied by the obstacles.

A. Homotopy and Homology Classes

We are interested in the high-level behavior of trajectories
in collision-free space to learn this behavior from humans. The
direction in which a trajectory passes obstacles is captured by
homotopy classes, a topology concept. Two trajectories are in
the same homotopy class if they can be continuously deformed
into each other without intersecting obstacles, while keeping
the endpoints fixed [1]. An example of homotopically distinct
trajectories is shown in Fig. 1. While homotopy classes provide
useful information, they are difficult to compute. Therefore,
we use the almost equivalent concept of homology classes, as
done in previous works [1, 15].

Contrary to homotopy classes, homology classes are com-
parable in practice through their H-signature. In the 3-
dimensional state space like X , the H-signature can be
computed by assuming that the time dimension progresses
linearly (e.g., discrete-time), and using a wire (or skeleton)
representing obstacles and their future motion through the
state space. The homology classes of two trajectories τ1 and
τ2 connected to the same starting and ending points may be
compared using their H-signature, by using the loop formed
by τ1 ⊔ −τ2:

hi(τ1 ⊔ −τ2) =

∫
τ1⊔−τ2

B(l)dl, (1)

where B(l) is the magnetic field vector and dl an infinitesimal
vector element along the loop path. We refer the reader to [1]
for more information.

B. Reference H-signature

We define our own version of the H-signature using a
reference trajectory τref and Eq. 1. We use a reference
trajectory to be able to assess the topology of a trajectory
in isolation, consistently and invariantly. Having a trajectory
τ with initial and final times t0 and tf , whose origin is
τ 0 = (xo, yo, t0) and final point is τ f = (xf , yf , tN ); the
reference trajectory is defined by the straight line that connects
the points τ 0 and τ f . It is the trajectory on the minimal energy,
and it forms a loop with τ . If we assume that the magnitude
of the current in the conductor in Eq. 1 is 1, hi(τref⊔−τ ) has
the value 0 if the obstacle i is not inside the loop (τ avoids
i in the same way as τref ), or ±1 otherwise. Considering M
humans as dynamic obstacles, we define the new signature as:

Href (τ ) = [h0(τref ⊔ −τ ), . . . , hM (τref ⊔ −τ )]T (2)

III. NAVIGATION SYSTEM

We aim to develop a navigation system that follows the
homology class selection of humans. It first derives homology
distinct trajectories, then selects one of them, and finally uses
a local motion planner to track it, repeating iteratively the
process.

A. Guidance trajectories proposal

We use the algorithm proposed in [4] to compute a sparse
representation of paths (guidance trajectories) that go from the
initial position of the robot to the goal, and use the H-signature
to filter the trajectories that belong to the same homology
class. The method is built on Visibility-PRM and works in
the same state space introduced in the problem formulation,
composed by the workspace and time X = R2 × [0, T ].
The result is a graph with a set of trajectories T ∗ where
Href (τ1) ̸= Href (τ2),∀(τ1, τ2) ∈ T ∗. The resulting trajecto-
ries are topologically distinct and represent different homology
classes that the robot may follow to reach the goal.

B. Homology class selection

While humans are constantly choosing a suitable topo-
logical path when navigating, manually defining a function
that considers all factors involved in the decision-making
process is impossible. We propose using a neural network with
parameters θ to estimate a cost, Jθ, that encodes the difference
between the homology class of the trajectory followed by a
hypothetical human, Href (τ

h), and the homology class of
each of the guidance trajectories found at time k, T ∗

k . Thus,
the selected guidance trajectory is the one with the minimum
cost:

τk = argmin
τi,k∈T ∗

k

Jθ(Href (τi,k),p
T
k ,OT

k ), (3)

The network is trained to estimate the difference in H-
signature (in a Euclidean sense) between the trajectory τ g

and the human trajectory τh:

yg = MSE(Href (τ
g),Href (τ

h)), (4)

Real-world UCY [11] and ETH [14] datasets of humans
navigating in crowds are used to train it. Each training sample
consists of a planning problem for one of the humans where his
trajectory is used as ground truth (τh in Eq. 4). The network
parameters θ are optimized to fit the data:

min
θ

Ns∑
k=1

Nh∑
g=1

Lpred(ŷ
g
k, y

g
k), (5)

where Lpred is MSE, Ns are the number of scenarios in the
dataset, Nh the number of homology classes found in scenario
k and Jθ(Href (τ

g),pT
k ,OT

k ) = ŷgk the network output.
The network encoding part is based on the architecture

proposed in [17] and [10]. It shares the same encoding
architecture with modifications to include the homology infor-
mation. The states of the robot and the surrounding humans are
first extended by linearly interpolating the velocity (vx,k, vy,k),



Fig. 2: Diagram with the layers of the network.

acceleration (ax,k, ay,k), and the heading angle α from current
and previous positions. Thus, the considered full state of the
robot is rk = [xk, yk, vx,k, vy,k, ax,k, ay,k, sinαk, cosαk] and
the state of the human j is sj,k = [xj,k, yj,k, vj,x,k, vj,y,k,
aj,x,k, aj,y,k, sinαj,k, cosαj,k]. The network is represented in
Fig. 2.

C. Local Optimization-based Planner

The selected guidance trajectory identifies the most suitable
homology class but is not guaranteed to be dynamically
feasible or collision free. To obtain a high-quality trajectory,
we initialize and track the guidance trajectory with a local
optimization-based planner that refines the trajectory in the
same state space, similar to [4]. The local planner is LM-
PCC [3], which solves a trajectory optimization, enforcing
dynamic and collision avoidance constraints and returns a
smooth trajectory near the guidance trajectory.

At every time step k, new guidance trajectories are sampled
and a new homology class is selected, reacting to changes in
environments with fast replanning capabilities, accounting for
estimation errors or changes in the behavior of the pedestrians.
Nevertheless, fast switching between trajectories in different
topology classes can lead to indecisive and ultimately non-
social navigation, so we include a small consistency weight to
keep the same homology class when others’ cost is similar.

IV. EVALUATION

A. Prediction evaluation

The network’s ability to select the correct guidance trajec-
tory is evaluated using the ETH/UCY dataset. We designed
an accuracy score to measure how often the homology class
chosen by the human matches the lowest cost estimated by
the network. To test its generalization, we trained the network
on four of the five scenarios (ETH, Hotel, University, Zara1,
and Zara2) and evaluated it on the fifth (Leave One Out). As
baselines, we used three heuristic-based hand-crafted costs,
taking Nτ samples of positions pi and accelerations ai at
constant intervals along the trajectories:

• Minimum length: The shortest guidance trajectory has the
lowest cost: Jlen =

∑
i∈Nτ

||pi − pi−1||
• Minimum acceleration: The smoothest trajectory has the

minimum cost: Jacc =
∑

i∈Nτ
αi||ai||, where α ≈ 1 to

discount accelerations in time.

• Mixed cost: Combine previous costs: Jmix = Jlen+Jacc

The accuracy results in Table I show that our method
significantly outperforms the baselines. We noted that once
a human decides how to pass others, they typically stick
to their initial decision, explaining why all methods have
good accuracy (> 0.5). Our method accurately selects the
homology class the human follows and estimates the decision
at any time step. The network’s consistent accuracy across
scenarios suggests it effectively generalizes. Fig. 1 shows a
scenario where the network chose the same trajectory as the
prerecorded human, opting for a less intrusive path different
from the one with the minimum Jlen.

TABLE I: Accuracy metrics of the predictions.

Cost ETH Hotel Univ Zara1 Zara2 Avg.
Jlen 0.770 0.808 0.730 0.786 0.767 0.772
Jacc 0.623 0.617 0.625 0.516 0.645 0.605
Jmix 0.730 0.797 0.729 0.779 0.758 0.759

Jθ (ours) 0.984 0.951 0.942 0.955 0.925 0.951

B. Simulation experiments

We conducted 50 simulation scenarios, gathering navigation
metrics similar to previous studies [2, 7], in a corridor envi-
ronment with 12 pedestrians using the Social Force model [8],
where the robot navigates 25 meters with differential-drive
restrictions. Metrics were collected for a differential-drive
Social Force version, a social DRL-based planner [12], an
MPC-based planner (LMPCC)[3], and SHINE. Metrics are
relative to Social Force, with results in Table II.

TABLE II: Social metrics of the different planners.

Metric Social DRL LMPCC SHINEForce
Success rate ↑ 0.74 0.90 0.98 0.98

Collision rate ↓ 0.26 0.10 0.02 0.02
Avg. path length ↓ 1.000 1.014 1.010 1.009
Avg. time to goal ↓ 1.000 0.997 1.052 1.003

Avg. speed ↑ 1.000 1.005 0.968 1.010
Path irregularity ↓ 1.000 2.093 0.793 0.814

Avg. ω ↓ 1.000 2.662 0.389 0.311
Avg. acceleration ↓ 1.000 1.537 1.116 0.805

Avg. jerk ↓ 1.000 1.673 1.080 0.760

In these scenarios, both LMPCC and SHINE are the safest,
showing higher success rates and lower collision rates. The
DRL planner, trained in a different simulator, might improve
in corridor scenarios with specific training, but this would
indicate limited effectiveness across different settings. There is
a noticeable difference in path irregularity and angular velocity
between MPC-based planners and reactive ones. MPC-based
planners, which plan the entire path in advance, produce
smoother trajectories, beneficial for social navigation. Addi-
tionally, our planner differs in average acceleration and jerk,
as it can escape local minima and smoothly replan when the
environment changes.
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Fig. 3: Video frames (top) and visualization (bottom) showing
a robot adapting to human intentions. In the visualization: the
light green line is the robot’s reference path, the transparent
shadow predicts the human’s trajectory, orange dots are po-
tential subgoals, and colored lines show possible guidance
trajectories. The chosen path is light blue, and red circles
represent the LMPCC-optimized path.

C. Real world experiments

We conducted experiments in a Clearpath Jackal platform,
with a marker-based tracking system to determine robot and
pedestrians positions and a Kalman filter to estimate their
velocities. A constant velocity assumption is used to estimate
humans’ future trajectories. We conducted experiments with
Social Force, the previous DRL planner, LMPCC, Guidance-
MPCC [4], and SHINE. While the former three exhibit dif-
ferent local behavior, Guidance-MPCC is similar to SHINE
but without social high-level considerations (it also chooses
among homology classes but with a cost based on heuristics).

We empirically tested SHINE in challenging scenarios
where other planners failed. Particularly, in case of Social
Force, scenarios where pedestrians and the goal had opposing
forces, for DRL out-of-distribution scenarios and for LMPCC
sudden changes in pedestrians trajectories that made it fall into
local optima. SHINE succeeded in all of them. An example
of SHINE in the latter is shown in Fig. 3. There is a head-on
scenario where, at first, the human’s intention is avoiding the
robot on the right side, and the guidance chosen by the robot
avoids the human on the right side too (light blue). Then,
the human decides to avoid the robot through the left. The
robot perceives his intentions and changes the homology class,
following a smooth avoidance maneuver.

We also conducted experiments with five pedestrians using
different navigation algorithms, without revealing which one
was active. Participants rated their comfort after each interac-
tion in short interviews. They found Social Force and DRL
too reactive, leading to some collisions, while SHINE was
rated higher than Guidance-MPCC due to fewer disturbances.
We compared SHINE and Guidance-MPCC based on their
obstacle avoidance behavior in Table III, noting how often
they avoided pedestrians by moving right or left, and whether
they passed before or after them. Both methods tended to avoid
obstacles on the right, likely due to cultural habits. Guidance-

(a) (b) (c)

Fig. 4: A sequence of the robot in a crowded environment.

MPCC preferred passing before pedestrians to maintain speed,
while SHINE preferred passing after to avoid interrupting
paths, aligning with socially desirable behavior.

TABLE III: Passing behavior of Guidance-MPCC and SHINE.

Method Left Right Before After
G-MPCC 0.437 0.563 0.596 0.404
SHINE 0.463 0.538 0.329 0.671

SHINE exhibits learned behaviors derived from real human
data rather than manual programming. For instance, in Fig. 4,
the robot encounters two humans at a crossing—one moving
quickly and the other slowly. SHINE chooses to pass behind
the fast-moving pedestrian and ahead of the slow-moving one,
minimizing disruption.

V. CONCLUSION

This work presented a novel motion planner for dynamic
environments that, unlike most of the learning-based social
navigation approaches, is capable of making human-like dis-
crete high-level decisions to navigate. It demonstrated a safe
and smooth behavior in a simulated and a real-world crowded
environments. Furthermore, the prediction framework shows
impressive results in predicting the homology class chosen
by the humans, which could be used in other problems and
open new research lines. The main limitation of the work
is computational time in low-cost devices, as it involves an
optimization and a neural network inference, while further
work will involve introducing a social local planner.
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