
Towards Automated Scenario Testing of Social

Navigation Algorithms

Shashank Rao Marpally 1, Pranav Goyal1, and Harold Soh1,2

1Dept. of Computer Science, National University of Singapore.
2Smart Systems Institute, NUS.

Email: {smarpally, pgoyal, harold}@comp.nus.edu.sg

Abstract—In this work, we take a step towards automat-
ing scenario-centric testing of social navigation algorithms. We
propose a pipeline that generates context, task, and location-
appropriate social navigation scenarios that can be readily real-
ized in a simulator. Our pipeline takes simple scenario metadata
and first generates a grounded textual scenario, then infers the
pedestrian and robot paths as well as the behaviors of the pedes-
trians, which enables simulating the scenario through HuNavSim
[9]. We use the social reasoning and code-writing abilities of
Large Language Models (LLMs) to enable scenario generation
and translation. Our experiments demonstrate that the design
choices in our pipeline generate realistic simulation scenarios and
significantly enhance scenario translation performance compared
to naive LLM prompting.

I. INTRODUCTION

Deploying robots in human-inhabited areas requires them to

not only be performant and safe, but also socially adept. How-

ever, social adeptness is an abstract, context-dependent, and

hard-to-quantify skill, making it challenging to evaluate [1].

For example, it is difficult to quantify and evaluate compliance

with subjective objectives/constraints such as proactivity and

contextual appropriateness.

One approach towards evaluating social robots is via sce-

nario testing, which is a popular framework that tests a system

in realistic and task-relevant scenarios. A scenario testing

framework involves the test designers consulting prior data

and assuming the role of an end user to design relevant

test scenarios. However, hand-crafting individual scenarios for

testing social navigation (SocNav) is challenging, tedious, and

not scalable. In addition to the quantification issues outlined

above, SovNav robots typically operate in unstructured and

unpredictable human environments, which makes it difficult

to identify important scenarios.

In this work, we propose a pipeline for automating scenario

generation for social navigation (Fig 1). Along with our simple

map annotation tool, our pipeline is capable of generating

a wide variety of social context and robot-task-appropriate

scenarios given a simulated location. We harness the power of

Large Language Models (LLMs) to propose textual scenarios

as well as transforming them into components that enable sim-

ulation through the HuNavSim [9] framework. We showcase

the utility of our system by generating four realistic scenarios.

The ease of use and scalability of our tool brings us a step

closer to enabling accessible scenario-centric testing for social

navigation algorithms.

II. BACKGROUND

We build on recent work in SocNav evaluation frameworks.

Francis et al. [1] provides an overview of the most prevalent

simulation and evaluation frameworks.

Unlike current SocNav benchmarks which mainly focus

on proxemics-based metrics in random dense crowds, we

focus on evaluating navigation algorithms on specific social

scenarios. Scenario cards, as described by [1], provide a

structured method for defining and generating scenarios. A

scenario card includes Metadata, Definition (location, intended

robot task, intended human behavior), and a usage guide.

For our framework, the user provides parts of the Metadata

and Definition, which are used to infer the path and the

behavior of the pedestrians in the simulation. SEAN 2.0 [11]

generates scenarios represented by propositional logic, using

behavior graphs initialized on the scene, but the occurrence

of the provided limited scenarios is not guaranteed and the

environments for scenario generation are limited. Additionally,

current SocNav simulators do not support verbal/gesture-based

interaction between the pedestrians and the robot, which is

common in real-life scenarios.

Pedestrians are typically modeled as moving obstacles con-

trolled by navigation algorithms like ORCA [12] and SFM

[4] or by prerecorded trajectories from real data [3]. The

trajectories of the pedestrians are typically random or need to

be handcrafted to orchestrate specific scenarios [10]. Neither

approaches allow scalable generation of context-appropriate

diverse scenarios. Recent works like HuNavSim [9], SEAN

2.0 [11] and Arena 3.0 [6] enable pedestrians in the simulation

to display more intelligent behaviors like grouping. However,

to orchestrate an intricate scenario, the behavior of each

pedestrian has to be handcrafted individually. Additionally,

using our simple map annotation tool, we enable scenario

generation in any arbitrary map, while previous works depend

on hand-crafted map features. LLMs have been recently shown

to be performant in human modeling [14], commonsense and

social reasoning [8, 5] and code writing [7]. We harness these

capabilities for scenario proposals as well as human path and

behavior generation.

III. METHODOLOGY

Fig. 1 shows an overview of our framework. We utilize

LLMs for proposing textual scenarios given the Social Con-

text, Location Description, Intended Robot Task and optionally



GPT-4o

Path Prompt

5. Simulation

HuNavSim

Map Image Scene Graph

Graph Tutorial Scenario

Path

3. Pedestrian and Robot Path Proposal

1. Map Annotation

Scenario

GPT-4o

Scenario Prompt

Social Context

Robot Task

Location Info

Rough Scenario

Scenario 
Description

Human Behavior
Proposal

Expected Robot
Behavior

2. Scenario Proposal

4. Pedestrian Behavior Tree Proposal

Behavior Tree Prompt

BT Tutorial

Behavior Trees
GPT-4o

Fig. 1: Overview of our pipeline from scenario proposal to simulation execution for SocNav. Please see text for details.

a Rough Scenario (we call these inputs: scenario metadata),

and then translate the description to a simulation instance

by querying LLMs with the Scene Graph and an extended

library of available behaviors from HuNavSim. We build our

framework using HuNavSim because it specifies pedestrian

behaviors through behavior trees, which an LLM can express

textually in XML, and because it is based on ROS2, thus mak-

ing integration with other robotics frameworks straightforward.

This pipeline enables an easy transition from textual scenario

metadata to a Gazebo 1 simulation instance through ROS2.

Our framework mainly consists of 5 parts:

1) Map Annotation(Sec.III-A)

2) Scenario proposal (Sec. III-B)

3) Pedestrian and Robot path proposal (Sec. III-C)

4) Pedestrian Behavior Tree proposal (Sec. III-D)

5) Simulation (Sec. III-E)

A. Map Annotation

We enable our framework to generate scenarios in any sim-

ulated location by providing a scene graph and an annotated

overhead image of the location as inputs to the LLM for

path generation. This helps provide location-specific context

to the LLM, allowing it to generate pedestrian paths via a

sequence of scene graph nodes grounded in the given location.

The scene graph nodes (with associated pixel coordinates)

can then be converted to world coordinates with a simple

transformation matrix. Thus, we expect the user to provide

an overhead orthographic image that covers the full scene, and

the transformation matrix to convert pixel coordinates to world

coordinates. Our annotation tool helps the user in generating

a scene-graph overlaid overhead image and a corresponding

JSON scene graph for their specific locations. The node and

edge schema for the scene graph in the annotation tool is

customizable, and our pipeline is independent of the keywords

used in the schema. An example scene graph overlaid on the

map image for the Small Amazon Warehouse2 is shown in Fig.

1. Note that, to reduce sequence-related biases by the LLM, we

1https://gazebosim.org/home
2https://github.com/aws-robotics/aws-robomaker-small-warehouse-world

use random 2-bit alphanumeric tokens for scene graph node

names.

B. Scenario proposal

To generate a scenario relevant to the scenario metadata, in

the given location, we construct a prompt for the LLM with

the following structure:

1) Definition of Social Navigation and Scenarios

2) Capabilities of human agents in the simulation (derived

from the behaviors available for use within the extended

HuNavSim library described in Section III-D)

3) Rules to be followed when proposing Human Behaviors

and Scenario Description

4) Social Context and Intended Robot Task: We ask the user

to describe the social context for the robot (e.g.: “The

robot is an evacuation robot in geriatric hospital”) and

the task of the robot (e.g.: “The robot is trying to guide

patients to the nearest exit”). These help in guiding the

LLM to generate relevant scenarios.

5) Location Description: A short description of the location.

Contains all the node and edge types used in the scene

graph schema.

6) Rough Scenario (optional): The user can provide a sce-

nario description that “roughly” specifies the scenario

they would like the framework to generate.

We instruct the LLM to output the following:

1) Scenario Description: A description of the scenario that

gives a basic idea about what the humans and robot are

doing in the context of the given location.

2) Human Behaviors: A description of how humans behave

in the presence and absence of the robot.

3) Expected Robot Behavior: A description of how the robot

is expected to behave in the given scenario. We expect

our tool to be used to generate scenarios that can be

used to evaluate subjective socialness metrics via human

evaluation.

We find that providing example inputs and corresponding

scenarios greatly improves the quality of the LLM’s responses,



and we provide a set of handcrafted responses in the prompt

as examples.

C. Pedestrian and Robot path proposal

Pedestrian paths and the robot’s waypoints for the scenario

are specified by an LLM, with scene graph node names. We

instruct the LLM to generate paths for each pedestrian in the

scene by structuring a prompt with:

1) Scene Graph in JSON and the Annotated Map image as

described in Sec III-A

2) Task Description: The LLM is instructed to choose a

sequence of nodes from the scene graph to specify the

robot and human paths.

3) Scene graph “tutorial”: A set of example Graph Q&A

examples that delineate how the scene graph is to be

used. Currently, this is adapted for the Small Amazon

Warehouse Map but can be scripted to be generated

for any map. We find that including such pedagogical

examples improves the likelihood of the LLM generating

a correct output.

4) Scenario Description (from III-B)

We also instruct the LLM to assign a group ID to each

human in the scenario. HuNavSim uses these group IDs to

generate groups of pedestrians dynamically in the simulation.

We find that often the LLM can make mistakes and generate

a discontinuous path. We detect such errors and requery the

LLM by identifying its mistake and appending the chat history

as context. We requery the LLM with identified mistakes for a

maximum of 3 times and thereafter restart the conversation if

it fails to generate valid paths again. We also provide example

scenarios and corresponding paths to improve the quality of

the LLM’s responses.

D. Pedestrian Behavior Tree proposal

We specify human behaviors with Behavior Trees (BT)

through BehaviorTree.CPP, which is used by HuNavSim to

control the actions of the humans in the simulation. The

behavior nodes available in HuNavSim do not support any

interaction between the human and the robot and other com-

plex behaviors. Thus, we implement additional behavior nodes

to enable the generation of scenarios encompassing the 25

scenarios shown in Francis et al. [1], which include interactive

scenarios (e.g. Intersection (“wait”), Entering Room etc.). For

generating behavior trees, for each pedestrian, we construct a

prompt for the LLM with the Behavior Tree node library (A

list of the available behavior tree action and condition nodes

that the LLM can compose to create the required behavior)

and the proposed Human Behaviors (from III-B). As in the

path generation module, we also provide a Behavior Tree

“tutorial” with instructions on syntax, rules, and Q&A and

example behavior descriptions and BTs. Including the pre-

existing action/condition nodes in HuNavSim, the following

conditions and actions are available for the LLM to use in

the Behavior Tree node library (their functionality is self

explanatory):

TABLE I: Specifications for testing the Scenario proposal

Social Context Robot Task

Scene 1 Emergency response
robot inside a
warehouse in a
disaster situation.

Guide humans to safety

Scene 2 Delivery bot in a small
warehouse.

Transport boxes in the warehouse

Scene 3 Maintenance robot
inside a warehouse.

Clean the warehouse

1) Condition Nodes: RobotSays (check if the robot is ges-

turing “wait”, “proceed”, “excuse me”, “acknowledged”

), HasRobotMoved, IsRobotBlocking, IsRobotVisible, Is-

GoalReached, and TimeExpiredCondition

2) Action Nodes: MakeGesture (“wait”, “proceed”, “excuse

me”), LookAtRobot, FollowRobot, AvoidRobot, Block-

Robot, and GiveWaytoRobot.

E. Simulation

The scene graph node sequence output by the LLM for

each pedestrian in the scenario is parsed, converted to world

coordinates, and written as navigation goals along with the

group IDs to a YAML file. The behavior trees are written to

XML files. Running a simulation with these files through Hu-

NavSim then creates a gazebo instance where the pedestrians

follow the specified paths and act according to the BTs. To

simulate interaction (gesturing), the pedestrians and the robot

publish the required gesture to specific ROS topics, which can

be subscribed to by the other agents. We provide a complete

example of the user inputs and the corresponding outputs from

the different parts of the pipeline in the Appendix.

IV. RESULTS

We showcase the utility of our framework by describing 4 of

the scenarios generated using our pipeline. For each scenario,

we generate a simulation from the pipeline in Gazebo and

teleoperate the turtlebot3 robot 3 through the waypoints output

by the LLM. We also separately evaluate the scenario proposal

module for correctness and realism of the generated scenarios

and the Path and BT proposal modules for correctness w.r.t a

given rough scenario.

A. Scenario Proposal

We evaluate our scenario proposal module by generating 5

scenarios for 3 different scenario metadata and subjectively

evaluate if they are realistic, executable, and relevant to the

specifications. We used scenarios characterized by the various

social contexts and robot tasks mentioned in Table I.

We observed a 100% success rate for the scenario proposal

module when a rough scenario was provided and a 60%

success rate when we prompted the LLM to generate scenarios

with no rough scenario. Thus, our framework can generate

grounded, simulatable, and context-appropriate scenarios. Fig.

4 shows a scenario generated by our pipeline for Scene 1.

Here, the scenario starts with the robot navigating towards

3https://emanual.robotis.com/docs/en/platform/turtlebot3/



Fig. 2: A robot encounters a human in a blind corner and the human is startled.

Excuse Me

Fig. 3: A robot encounters a group and requests passage. The group gives way to the robot.

Proceed

Fig. 4: An evacuation robot guides 2 humans to an exit. The humans follow the robot.

TABLE II: Scenarios for Path and BT proposal.

Rough Scenario

Scene A Robot starts inside a narrow aisle, A human is standing at
the opposite end of the aisle. The human is still until the
robot is blocking its path, if not the human starts moving
towards its goal.

Scene B Robot turns at a blind corner and encounters a human. The
human sees the robot when it is very close and stops
completely until the robot is not blocking it anymore.

Scene C While transporting a box, the robot comes across a group of
3 humans. The humans checks if the robot says excuse me
and if yes, then they give way to the robot, or else they
continue standing in the group

the first human on the left and gesturing “PROCEED”, who,

upon receiving the instruction, starts following the robot.

Another human initially moves towards the robot, then follows

it as well. The robot then “guides” the pedestrians to the

exit waypoint. Note that this emulates a realistic evacuation

scenario and was generated from scratch using our pipeline.

B. Path and BT Proposal

To test the path and behavior generation modules, we run

the pipeline 5 times for 3 scenarios and subjectively evaluate

them for correctness w.r.t their fidelity to the provided rough

scenario as well as their simulatibility. For all the scenarios

we used the same Social Context of Scene 2 (Table I). We

provided different rough scenarios for each scene (Table II).

Scenes A and B are inspired by real-life pedestrian interac-

tion studies done by Fujioka et al. [2] and Wolfinger [13],

respectively. To evaluate our design decisions, we tested our

method against a Naive method, where we directly queried the

TABLE III: Evaluation of Path and BT generation

Path Validity Behavior Tree Validity

Naive 0.26 0.13

Ours 0.86 0.86

LLM to output the scenario descriptions, paths, and the BTs,

all at once, without our tutorials and extensive examples. The

results in Table III show that our modular design and prompt

engineering significantly improve the success rate of scenario

execution.

V. CONCLUSION

In this work, we presented a customizable and automated

pipeline for proposing and generating diverse social navigation

scenarios in any simulated location. This is a first step towards

a scenario-centric testbed for evaluating social navigation

algorithms. Paired with human evaluation, we expect scenario-

based testing to greatly complement current proxemic-centric

benchmarks by enabling testing of subjective and hard-to-

define social metrics through scenario-centric evaluation.

We plan to make a number of improvements to our frame-

work in the next iteration. Currently, we expect the user to

provide an orthographic map image enclosing the full scene

along with the transformation matrix for pixel coordinates

to world coordinates. We plan to automate this module so

that only a gazebo world file is required. We also find that

despite providing numerous examples in the prompt, the

LLM makes logical/reasoning errors. We plan to design a

verification module to match the generated simulator scene

with the scenario description generated in III-B.



REFERENCES

[1] Anthony Francis, Claudia Pérez-D’Arpino, Chengshu

Li, Fei Xia, Alexandre Alahi, Rachid Alami, Aniket

Bera, Abhijat Biswas, Joydeep Biswas, Rohan Chan-

dra, Hao-Tien Lewis Chiang, Michael Everett, Sehoon

Ha, Justin W. Hart, Jonathan P. How, Haresh Karnan,

Tsang-Wei Edward Lee, Luis J. Manso, Reuth Mirksy,

Soeren Pirk, Phani Teja Singamaneni, Peter Stone, Ada V

Taylor, Pete Trautman, Nathan Tsoi, Marynel Vázquez,

Xuesu Xiao, Peng Xu, Naoki Yokoyama, Alexander

Toshev, Roberto Martin-Martin Logical Robotics, Nvidia,

Stanford, Google, Epfl, Purdue, Cmu, Ut Austin, Mit,

Northeastern, Georgia Tech, Aston, Bar Ilan, Adobe,

Laas-Cnrs, Universit’e de Toulouse, AI Sony, Honda,

Yale, Gmu, and Apple. Principles and Guidelines for

Evaluating Social Robot Navigation Algorithms. ArXiv,

abs/2306.16740, 2023. URL https://api.semanticscholar.

org/CorpusID:259287246.

[2] Yusuke Fujioka, Yuyi Liu, and Takayuki Kanda. I

Need to Pass Through! Understandable Robot Behavior

for Passing Interaction in Narrow Environment. In

Proceedings of the 2024 ACM/IEEE International Con-

ference on Human-Robot Interaction, HRI ’24, page

213–221, New York, NY, USA, 2024. Association for

Computing Machinery. ISBN 9798400703225. doi:

10.1145/3610977.3634951. URL https://doi.org/10.1145/

3610977.3634951.

[3] Fabien Grzeskowiak, David Gonon, Daniel Dugas, Diego

Paez-Granados, Jen Jen Chung, Juan Nieto, Roland

Siegwart, Aude Billard, Marie Babel, and Julien Pettré.

Crowd against the machine: A simulation-based bench-

mark tool to evaluate and compare robot capabili-

ties to navigate a human crowd. In 2021 IEEE In-

ternational Conference on Robotics and Automation

(ICRA), page 3879–3885. IEEE Press, 2021. doi: 10.

1109/ICRA48506.2021.9561694. URL https://doi.org/

10.1109/ICRA48506.2021.9561694.

[4] Dirk Helbing and Péter Molnár. Social force model for

pedestrian dynamics. Phys. Rev. E, 51:4282–4286, May

1995. doi: 10.1103/PhysRevE.51.4282. URL https://link.

aps.org/doi/10.1103/PhysRevE.51.4282.

[5] Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth

Karamcheti, Anca Dragan, and Dorsa Sadigh. Toward

Grounded Commonsense Reasoning. 2024. URL https:

//arxiv.org/abs/2306.08651.

[6] Linh Kästner, Volodymyir Shcherbyna, Huajian Zeng,

Tuan Anh Le, Maximilian Ho-Kyoung Schreff, Halid Os-

maev, Nam Truong Tran, Diego Diaz, Jan Golebiowski,

Harold Soh, and Jens Lambrecht. Arena 3.0: Advancing

Social Navigation in Collaborative and Highly Dynamic

Environments, 2024. URL https://www.arxiv.org/abs/

2406.00837.

[7] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol

Hausman, Brian Ichter, Pete Florence, and Andy Zeng.

Code as Policies: Language Model Programs for Em-

bodied Control. In 2023 IEEE International Confer-

ence on Robotics and Automation (ICRA), 2023. URL

https://ieeexplore.ieee.org/document/10160591.

[8] Karthik Mahadevan, Jonathan Chien, Noah Brown,

Zhuo Xu, Carolina Parada, Fei Xia, Andy Zeng, Leila

Takayama, and Dorsa Sadigh. Generative Expressive

Robot Behaviors using Large Language Models. 2024.

URL https://doi.org/10.1145/3610977.3634999.

[9] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero,

and Luis Merino. Hunavsim: A ros 2 human navigation

simulator for benchmarking human-aware robot naviga-

tion. IEEE Robotics and Automation Letters, 2023. URL

https://ieeexplore.ieee.org/abstract/document/10252030/.

[10] Nathan Tsoi, Mohamed Hussein, Jeacy Espinoza, Xavier

Ruiz, and Marynel Vázquez. Sean: Social environment

for autonomous navigation. In Proceedings of the 8th

international conference on human-agent interaction,

pages 281–283, 2020. URL https://dl.acm.org/doi/abs/

10.1145/3406499.3418760.

[11] Nathan Tsoi, Alec Xiang, Peter Yu, Samuel S Sohn, Greg

Schwartz, Subashri Ramesh, Mohamed Hussein, An-

jali W Gupta, Mubbasir Kapadia, and Marynel Vázquez.

Sean 2.0: Formalizing and generating social situations for

robot navigation. IEEE Robotics and Automation Letters,

7(4):11047–11054, 2022. URL https://ieeexplore.ieee.

org/abstract/document/9851501.

[12] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh

Manocha. Reciprocal n-body collision avoidance. In

Robotics Research: The 14th International Symposium

ISRR, pages 3–19. Springer, 2011. URL https://link.

springer.com/chapter/10.1007/978-3-642-19457-3 1.

[13] Nicholas H. Wolfinger. PASSING MOMENTS: Some

Social Dynamics of Pedestrian Interaction. Journal of

Contemporary Ethnography, 24(3):323–340, 1995. doi:

10.1177/089124195024003004. URL https://doi.org/10.

1177/089124195024003004.

[14] Bowen Zhang and Harold Soh. Large language models as

zero-shot human models for human-robot interaction. In

2023 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 7961–7968. IEEE,

2023. URL https://ieeexplore.ieee.org/abstract/document/

10341488.



I. APPENDIX

A. Example Scenario Generation

In this section, we give an example for the generation of
a scenario and describe the LLM’s prompts and responses
in detail. we annotated an overhead orthographic image of
the Small Amazon warehouse 1 to generate the scene graph
JSON and scene graph image. We used the following inputs
to generate a scenario in a blind corner with a startled human:

• Social Context: Robot is a delivery bot in a small
warehouse. There are employees performing daily duties
walking around the warehouse.

• Location Description: The location consists of passage-
ways, intersections, and open areas, organized to facilitate
efficient navigation and connectivity. Passageways form
the primary paths that connect various parts of the facility,
ensuring straightforward routes between specific nodes
like corners and intersections. Intersections act as critical
nodes where multiple passageways converge, enabling
choices in directional movement. Open areas provide
larger, unobstructed spaces that could serve as gathering
places or functional zones. The entire layout is linked
by direct connections between these nodes, forming a
grid-like structure that aids in understanding the spatial
organization and potential routes for movement within the
environment.

• Robot Task: The robot has to transport a box from one
point to another in the warehouse.

• Rough Scenario: The robot takes a turn at a blind
corner, and encounters a human immediately. The human
only sees the robot when its very close and just stops
completely until the robot is not blocking it anymore

Scenario and Behavior Proposal: The output from the LLM
for scenario description and behavior:

• Scenario Description: The robot is transporting boxes
through a Small Amazon Warehouse. It moves through
a Passageway and takes a turn at a blind corner near an
intersection. Upon turning the corner, the robot encoun-
ters an employee who is walking and performing daily
warehouse duties. The human, only seeing the robot when
it is very close, comes to a complete stop and waits for
the robot to pass before continuing with their task.

• Human Behavior: Stops completely upon seeing the
robot very close and waits until the robot is not blocking
its path anymore before proceeding.

• Expected Robot behavior: The robot should continue
moving forward while transporting the boxes, ensuring
that it safely navigates around the human who has
stopped. If necessary, the robot should say “proceed” to
the human to indicate that it will move quickly to clear
the path.

Path Proposal: The output by the path generation LLM is
given below. Note that the paths are node sequences in the
scene graph as shown in Fig.?? and a group ID of -1 signifies
a lone human (as opposed to a human in a group). The LLM

has correctly selected a blind corner for the scenario proposed
by the first module.

• paths:
– ROBOT: [“11”,“07”,“f7”]
– HUMAN1: [“f7”, “07”]
– GroupIDs: “HUMAN 1”: -1

Behavior Tree Proposal: The output from the LLM for
the behavior tree of the startled human is given below. The
“startled” behavior is emulated by making the pedestrian stop
navigation when the robot blocks their path.

1 <root main_tree_to_execute="StopAndWaitTree">
2 <include path="BTRegularNav.xml"/>
3 <BehaviorTree ID="StopAndWaitTree">
4 <Fallback name="StopAndWaitFallback">
5 <Sequence name="StopSequence">
6 <IsRobotBlocking agent_id="{id}" distance="

0.5"/>
7 </Sequence>
8 <Sequence name="RegNav">
9 <SetBlackboard output_key="agentid" value="

{id}"/>
10 <SetBlackboard output_key="timestep" value=

"{dt}"/>
11 <SubTree ID="RegularNavTree" id="agentid"

dt="timestep"/>
12 </Sequence>
13 </Fallback>
14 </BehaviorTree>
15 </root>

Fig. 1: Small Amazon Warehouse Map annotated with Scene
graph. Each node in the graph has an associated type (here:
intersection/open area/narrow aisle/area/corner) and each edge
is also associated with types (here: doorway/narrow doorway/-
passageway).

II. LLM PROMPTS

A. Scenario Proposal

1 Social Navigation is a complex skill for a robot to
accomplish and the appropriateness of the behavior of a
robot is highly dependent on the task and the social
context.

2 Thus a r o b o t s social navigation capabilities must be
thoroughly tested, and this is done by evaluating the
r o b o t s behavior in a number of scenarios in a
variety of contexts.



3 You are a scenario designer. Your task is to generate
scenarios to test the social navigation capabilities of
a robot.

4 A Social Navigation [Scenario] is defined by:
5 1. Scenario Description: very detailed description of

the scenario. WHAT happens in the scenario and WHERE
the scenario takes place. WHERE the robot and humans
are located.

6 2. Human Behavior: how human interacts with the robot
when it is visible, for e.g. Human 1 is scared of the
robot and asks it to stop, Human 2 doesn’t notice the
robot at all etc.

7 Your output description will be later used by an expert
Behaviour tree designer to generate a Behavior Tree for
each human in the scene.

8

9 The behavior tree designer is not allowed to modify the
scenario and can only create behavior that can be
generated using the following Actions and Conditions:

10 - Conditions
11 - Check the visibility of the robot
12 - Check if the human has reached their goal
13 - Check if robot is saying any particular phrase
14 - Check if the robot is currently moving
15 - Check if the robot is blocking the human’s path
16

17 - Actions:
18 - Make the human perform a gesture.
19 - Make the human perform normal navigation to reach

its goal and treat the robot as a normal obstalce.
This is regular behavior for humans.

20 - Make the human look in the direction of the robot
21 - Make the human follow the robot
22 - Make the human scared of the robot and avoid it.
23 - Make the human give way to the robot
24 - Make the human move quickly towards the front of

the robot and block the robot.
25

26 NOTE: AT ANY GIVEN POINT OF TIME, THE HUMAN CAN
ONlY PEFORM ANY ONE OF THE ABOVE ACTIONS.

27

28 The humans are only capable of performing the actions
mentioned above.

29 User will provide a [Social context], a [Task] that the
robot needs to do, a description of the location and
optionally a [Rough Scenario].

30 Your generated scenario will be programmatically simulated
through a pipeline into a scenario in the Gazebo
physics simulator.

31 Rules:
32 - Describe human behavior by describing their [Human Task]

and their [Behavior Towards Robot].
33 - The humans can say "WAIT", "PROCEED", "EXCUSE ME" to the

robot to aid in navigation. The robot can say "WAIT",
"PROCEED", "EXCUSE ME", "ACKNOWLEDGED" to the humans to
aid in navigation.

34 - When the user provides a Rough Scenario, ensure your
final scenario is strictly aligned to the rough
scenario

35 - The humans in the simulator are SIMPLIFIED OBJECTS that
only can move in 2D, send and receive simple phrases,
detect and simulate looking at the robot, group
together with other humans, navigate to a predefined
goal and change their trajectory conditioned on the
r o b o t s position and velocity.

36 - When using groups in the scenario, add all group members
to the humans in the scenario. Having only 1 human with
’INTERACTING WITH GROUP’ task is incorrect.

37

38 Design a scenario relevant to the following specifications:
39

40 [Social context]: Robot is a home assistant in a
Singaporean old-age home and performs daily helpful
duties for the residents

41 [Robot Task]: Deliver coffee
42 [Rough Scenario]: None
43 [Location]: The home has a Kitchen, a Bedroom and a

Living Room. A doorway connects the Kitchen to the
Living Room and a Passageway connects the Living Room
and the Doorway.

44

45 YOU ADHERE TO THE FOLLOWING JSON FORMAT STRICTLY.
46 {
47 ’Scenario Description’: <very detailed description of the

scenario >,
48 ’Number of Humans’: <Number of humans that are involved in

the scenario>,
49 Human behavior’: {
50 Human 1 : <Describe the behavior of Human 1>,
51 Human 2 : <Describe the behavior of Human 2>,
52 },
53 ’Expected Robot Behavior’: <Describe the behavior expected

from the robot>
54 }
55

56 ASSISTANT:
57 {
58 ’Scenario Description’: "The robot is trying to deliver

coffee from the Kitchen to the Living Room and
encounters one of the elderly residents entering the
Kitchen from the Living Room through the Doorway.",

59 ’Number of Humans’: 1,
60 ’Human Behavior’:{
61 ’Human 1’: Human 1 is going from going to kitchen from

the living room. If the robot is very close-by, Human
asks the robot to stop and waits (for a maximum of 5s)
for the robot to stop, then continues navigating.
Ignores the robot if it asks the human to wait.

62 },
63 ’Expected Robot Behavior’: "The robot says "I AM HERE"

to the resident. It waits for the resident to be well
clear of the Doorway before going through the Doorway
to the Living Room in a slow pace."

64 }
65

66 USER:
67 Design a scenario relevant to the following specifications:
68

69 [Social Context]: <SOCIAL CONTEXT USER INPUT>
70 [Task]: <TASK USER INPUT>
71 [Location]: <LOCATION DESCRIPTION USER INPUT>
72 [Rough Scenario]:<ROUGH SCENARIO USER INPUT>
73

74 YOU ADHERE TO THE FOLLOWING JSON FORMAT STRICTLY."""+"""
75 {
76 ’Scenario Description’: <very detailed description of the

scenario >,
77 ’Number of Humans’: <Number of humans that are involved in

the scenario>,
78 Human behavior’: {
79 Human 1 : <Describe the behavior of Human 1>,
80 Human 2 : <Describe the behavior of Human 2>,
81 },
82 ’Expected Robot Behavior’: <Describe the behavior expected

from the robot>
83 }

B. Path Proposal

1 SYSTEM:
2 You are an expert floor planner and a software engineer.

You ALWAYS provide output that in JSON which is fully
parseable with json.loads in python.

3

4 USER:
5 The image shows a location which is represented by a scene

graph. A scene graph is a graph with nodes (numbered



red circles) representing locations and edges (blue
lines) connecting them.

6 A person/ can only move from one node to another if the two
nodes are connected by an edge.

7 The scene graph in json file format is also given below,
where each node and edge has a unique id, a type, the
pixel position of the node in the image (pos).

8 <INSERT SCENE GRAPH>
9 The type of a node is one among <NODE TYPES>.

10 The graph is bidirectional and each edge is also
represented with the edge list ’links’ in the json
given below.

11 Remember that a node can only be reached from another node
if they have an edge between them in the scene graph
json.

12 Now answer the following questions below:
13 Is node 0e connected to node 07?
14 Return an answer in JSON format shown below:
15 {
16 ’ANSWER’: True/False,
17 ’REASONING’: <Reasoning for answer>
18 }
19 <INSERT MAP IMAGE OVERLAID WITH SCENE GRAPH>
20

21 ASSISTANT:
22 {
23 ’ANSWER’: False
24 ’REASONING’: ""To determine if node "0e" is connected

to node "07," we need to trace the paths in the
provided edges.

25 Nodes:
26 "0e" at position [80, 660] (type: CORNER)
27 "07" at position [28, 318] (type: CORNER)
28

29 Edges involving "0e":
30 {"type": "PASSAGEWAY", "source": "0e", "target":

"32"}
31 {"type": "PASSAGEWAY", "source": "0e", "target": "

cb"}
32 Edges involving "07":
33 {"type": "NARROW PASSAGEWAY", "source": "11", "

target": "07"}
34 {"type": "PASSAGEWAY", "source": "07", "target": "

f7"}
35

36 There are no direct or indirect edges connecting "0e"
to "07" through other nodes. Therefore, node "0e" is
not connected to node "07".

37 }
38

39 ....
40

41 Let’s initialize a simulator (like Gazebo) with the world
given in the image and described by the json file and
try to orchestrate the following human-robot scenario:

42

43 Robot is transporting a box from one point to another in
the warehouse. While moving along a passageway, it
encounters an employee walking in the opposite
direction.

44

45 You must select the trajectories of the humans and the
robot to orchestrate this scenario. You must also
assign integer group ids to the HUMANS ONLY involved in
the scenario according to the

46 following rule:
47 1. All the members of the same group must have the same

group id.
48 2. If a human is not involved in a group, they will have a

group id of -1.
49 3. If the scenario does not specifically mention a group,

then assign -1 to all humans
50 4. All humans involved in the scenario must be assigned a

group id.

51 Format your output in json as given below:
52 {
53 ’REASONING’: <Reasoning for Answer>,
54 ’TRAJECTORIES’: {
55 ’ROBOT’: <...>
56 ’HUMAN 1’: <...>,
57 ’HUMAN 2’: <...>,
58 ’HUMAN 3’: <...>,
59 },
60 ’GROUP ID’:{
61 ’HUMAN 1’: ..,
62 ’HUMAN 2’: ...,
63 ...
64 }
65 }
66 ASSISTANT:
67 ’REASONING’:""To create a scenario where robot is

transporting a box from one point to another in the
warehouse and encounters an employee walking in the
opposite direction along a passageway, we need to
identify a suitable passageway and ensure that robot
and the employee move towards each other from opposite
directions.

68

69 ### Scenario Setup:
70 1. robot starts at one node and moves along a passageway

towards a destination node.
71 2. An employee starts at the destination node and moves

along the same passageway towards robot.
72

73 ### Suggested Passageway:
74 We’ll use the passageway between nodes "07", "f7", and "d9"

again as it is a straightforward path that allows for
clear movement in opposite directions.

75

76 ### robot’s Trajectory:
77 1. **Start at node "f7"** (robot picks up the box here)
78 2. **Move to node "07"** (robot moves along the passageway)
79

80 ### Employee’s Trajectory:
81 1. **Start at node "07"**
82 2. **Move to node "f7"** (The employee moves along the same

passageway towards robot)
83

84 ### Detailed Node Sequence:
85

86 #### robot’s Nodes:
87 1. f7
88 2. 07
89

90 #### Employee’s Nodes:
91 1. 07
92 2. f7
93

94 ### Path Visualization:
95 - **robot’s Path**: f7 07
96 - **Employee’s Path**: 07 f7
97

98 ### Simulator Initialization:
99 - **robot** starts at node "f7" and follows the path f7

07.
100 - **Employee** starts at node "07" and follows the path 07

f7.
101

102 Since there is only one human in the scenario and the human
is not involved in any groups, the group id for this
human is the default -1.

103

104 In a simulator like Gazebo, you can set up the initial
positions of robot and the employee at their respective
starting nodes and let them move along the described
paths. They will encounter each other along the
passageway between nodes "f7" and "07".

105



106 ### Steps to Simulate:
107 1. Initialize robot at node "f7" with a box.
108 2. Initialize the employee at node "07".
109 3. Set both to move towards each other along the passageway

.
110

111 This will create the scenario where robot, while
transporting a box, encounters an employee walking in
the opposite direction along the same passageway."",

112

113 ’TRAJECTORIES’: {
114 ’ROBOT’: [’f7’,’07’]
115 ’HUMAN 1’: [’07’,’f7’],
116 },
117

118 ’GROUP ID’:{
119 ’HUMAN 1’: -1
120 }
121 ....
122

123 Now generate trajectories for the following scenario:
124 <SCENARIO DESCRIPTION FROM USER INPUT>
125 You must select the trajectories of the humans and the

robot to orchestrate this scenario. You must also
assign integer group ids to the HUMANS ONLY involved in
the scenario according to the following rule:

126 1. All the members of the same group must have the same
group id.

127 2. If a human is not involved in a group, they will have a
group id of -1.

128 3. If the scenario does not specifically mention a group,
then assign -1 to all humans

129 4. All humans involved in the scenario must be assigned a
group id.

130 Format your output in JSON as given below:
131 {
132 ’REASONING’: <Reasoning for Answer>,
133 ’TRAJECTORIES’: {
134 ’ROBOT’: <...>
135 ’HUMAN 1’: <...>,
136 ’HUMAN 2’: <...>,
137 ’HUMAN 3’: <...>,
138 },
139 ’GROUP IDS’:{
140 ’HUMAN 1’: ..,
141 ’HUMAN 2’: ...,
142 ...
143 }
144 }

C. Behavior Tree Proposal

1 SYSTEM:
2 Act as an expert Behavior Tree Designer for a social

navigation robotics simulator and an expert software
engineer. You ALWAYS provide output that in JSON which
is fully parseable with json.loads python.

3 You are diligent and tireless!
4 You NEVER leave comments describing code without

implementing it!
5 You always COMPLETELY IMPLEMENT the needed code and do not

leave placeholders or assume anything!
6

7 USER:
8 Your job is to design a Behavior Tree using the

BehaviorTree.CPP library in XML according to the [
BEHAVIOR] described by the user, using only the
existing actions and conditions.

9 The tutorial below will explain how to design behavior
trees in XML:

10

11 - The first tag of the tree is <root> with the attribute ’
main_tree_to_execute’. It should contain 1 or more tags

<BehaviorTree> and the The tag <BehaviorTree> should
have the attribute [ID]. E.g:

12 <root main_tree_to_execute = ’SaySomething’>
13 ....
14 <BehaviorTree ID="SaySomething>
15 ...
16 </BehaviorTree>
17 </root>
18 - The <BehaviorTree> tag can contain only 1 child node (

including Fallback, Sequence, Action and Condition
Nodes)

19 - Sequence and Fallback nodes contain 1 to N children and
dictate control flow in the behavior tree.

20 - Sequence nodes execute their children in order and
return Success only if ALL CHILD NODES returned SUCCESS
. (like an AND gate).

21 - Each sequence node typically has multiple child
nodes

22 - Fallback nodes execute their children in order and
return Success if ANY CHILD NODE SUCCEEDS(like an OR
gate).

23

24 - Each Sequence and Fallback TreeNodes are represented by a
single tag with an associated name. E.g.:

25 <Fallback name="SaySomething 1">
26 <Sequence name = "SaySomething 2">
27 ....
28 </Sequence>
29 </Fallback>
30 JSONe">
31 <Sequence name="RegNav">
32 <SetBlackboard output_key="agentid" value="{id

}" /> <!--Main tree creates a blackboard entry ’agentid
’ with the value retrieved from the blackboard entry "
id" -->

33 <SetBlackboard output_key="timestep" value="{dt
}" /> <!--Main tree creates a blackboard entry ’
timestep’ with the value retrieved from the blackboard
entry "id" -->

34 <SubTree ID="RegularNavTree" id="agentid" dt="
timestep" /> <!-- The "id" and "dt" ports of the
subtree are mapped to the agentid and timestep ports of
the main tree blackboard -->

35 </Sequence>
36 </BehaviorTree>
37

38 The following Action Nodes, Condition nodes and Decorators
are available to use and can be composed into behavior
trees to achieve the user’s request.

39

40 - BT Conditions
41 - IsRobotVisible(agent_id ,distance) : returns

Success when the robot is within the input distance of
the agent and visible(in line of sight) to the agent.
Distance is in meters.

42 - IsRobotNearby(agent_id, distance) : returns
Success when the robot is within the input distance of
the agent. Distance is in meters.

43 - IsGoalReached(agent_id) : returns Success if the
agent has reached their current goal

44 - TimeExpiredCondition(seconds, ts, only_once):
Creates a timer and returns SUCCESS if the input
duration in seconds has expired since ticking this node
the first time (and FAILURE otherwise). If only_once =
False, then the timer repeats (use this for
periodically occuring behaviors).

45 - RobotSays(agent_id, message) : Returns Success if
the robot is currently performing a gesture
corresponding to the message(int) passed to the
functions. Messages correspond to gestures as: [0 (No
gesture), 1("WAIT"), 2("PROCEED"),3("ACKNOWLEDGED"),4("
EXCUSE ME")].

46 - RobotMoved(agent_id): Returns success if the
robot has non zero velocity.



47 - IsRobotBlocking(agent_id, distance): Returns
Success if the robot is in direct line of sight of the
agent and within the input distance. Distance is in
meters.

48 - Note: In the simulator, for distance, 0.5 is
considered very close, 1.0 is considered very closed,
2.0 is considered moderate distance and 5.0 is
considered far

49 - BT Actions:
50 - UpdateGoal(agent_id) : Updates the goal of the

agent to the next goal in the a g e n t s goal queue
51 - MakeGesture(agent_id,message): Makes the agent

perform a gesture. Choices are: [0 (No gesture), 1("
WAIT"), 2("PROCEED"), 3("EXCUSE ME")]. Initial value is
0 and once this node is ticked, the agent will keep

making the gesture until it is set back to 0.
52 - RegularNav(agent_id,time_step) : Makes the agent

perform standard social-force-model based motion
planning, where the robot is treated as a normal
obstacle.

53 - LookAtRobot(agent_id) : Makes the agent look in
the direction of the robot

54 - FollowRobot(agent_id,time_step): Makes the agent
follow the robot

55 - AvoidRobot(agent_id,time_step): Makes the agent
overly avoid the robot.

56 - GiveWaytoRobot(agent_id,time_step): Makes the
agent give way to the robot.

57 - BlockRobot(agent_id,time_step): Makes the agent
move in front of the robot and block it

58

59 - BT Decorators:
60 - Inverter: An inverter block inverts the output of

its children (If children output failure, inverter
outputs success and vice-versa).

61

62 The following behavior tree is available for including as a
subtree, which implements a simple obstacle-avoiding

human:
63 - BTRegularNav.xml:
64 <root main_tree_to_execute = "RegularNavTree">
65 <BehaviorTree ID="RegularNavTree">
66 <Fallback name="RegularNavFallback">
67 <Sequence name="RegularNavigation">
68 <Inverter>
69 <IsGoalReached agent_id="{id}" />
70 </Inverter>
71 <RegularNav agent_id="{id}" time_step

="{dt}" />
72 </Sequence>
73 <UpdateGoal agent_id="{id}" />
74 </Fallback>
75 </BehaviorTree>
76 </root>
77 Now answer the following question:
78

79 If i want a human to gesture "WAIT" what should be the
corresponding xml code

80

81 Return output in the following json format:
82 {
83 ’REASONING’: <Reasoning behind answer>
84 ’ANSWER’: <XML CODE>
85

86 }
87

88 ASSISTANT:
89 {
90 ’REASONING’: "To create a behavior tree where a human

gestures "WAIT," you need to use the ‘MakeGesture‘
action node with the message corresponding to the "WAIT
" gesture. The message code for "WAIT" is 1.

91 In this behavior tree:
92 - ‘<root main_tree_to_execute="WaitGestureTree">‘ specifies

the main tree to execute.
93 - ‘<BehaviorTree ID="WaitGestureTree">‘ defines a behavior

tree with the ID "WaitGestureTree."
94 - ‘<Sequence name="WaitGestureSequence">‘ creates a

sequence node named "WaitGestureSequence."
95 - ‘<MakeGesture agent_id="{id}" message="1"/>‘ makes the

agent perform the "WAIT" gesture (message code 1).
96 "
97 ’ANSWER’: "<root main_tree_to_execute="WaitGestureTree

">
98 <BehaviorTree ID="WaitGestureTree">
99 <Sequence name="WaitGestureSequence">

100 <MakeGesture agent_id="{id}" message="1"/>
101 </Sequence>
102 </BehaviorTree>
103 </root>
104 "
105 }
106 ...
107 Now, create a behavior tree for the following behavior:
108 <BEHAVIOR DESCRIPTION FROM SCENARIO PROPOSAL>
109

110 YOU MUST NOT USE ANY CUSTOM ACTION/CONDITION NODES AND ONLY
USE THE NODES AVAILABLE.

111 Return an answer in JSON format shown below:"""+"""
112 {
113 ’REASONING’: <reasoning behind tree design>,
114 ’TREE’: <XML Behavior Tree ONLY>,
115 }


	Scenario_Generation_for_Social_Navigation_main_compressed
	Introduction
	Background
	Methodology
	Map Annotation
	Scenario proposal
	Pedestrian and Robot path proposal
	Pedestrian Behavior Tree proposal
	Simulation

	Results
	Scenario Proposal
	Path and BT Proposal

	Conclusion

	Appendix
	Appendix
	Example Scenario Generation

	LLM prompts
	Scenario Proposal
	Path Proposal
	Behavior Tree Proposal



