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Abstract—We investigate the feasibility of deploying reinforce-
ment learning (RL) policies for constrained crowd navigation
using a low-fidelity simulator. We introduce a representation
of the dynamic environment, separating human and obstacle
representations. Humans are represented through detected states,
while obstacles are represented as computed point clouds based
on maps and robot localization. This representation enables RL
policies trained in a low-fidelity simulator to deploy in real world
with a reduced sim2real gap. Additionally, we propose a spatio-
temporal graph to model the interactions between agents and
obstacles. Based on the graph, we use attention mechanisms to
capture the robot-human, human-human, and human-obstacle
interactions. Our method significantly improves navigation per-
formance in both simulated and real-world environments. Video
demonstrations can be found at https://sites.google.com/view/
constrained-crowdnav/home.

I. INTRODUCTION

To co-exist and collaborate with people seamlessly, robots
must navigate through dynamic environments with both mov-
ing agents and static obstacles. Such environments are usually
constrained: in indoor environments, walls and furniture are
common, while in outdoor environments, robots must stay on
their lanes or sidewalks.

Robot crowd navigation has received much attention since
last century [8, 10, 28, 37, 19]. Model-based approaches
have explored various mathematical models, such as velocity
obstacles [33, 32], dynamic windows [8], and forces [9],
to optimize robot actions. Although these models consider
both humans and obstacles, they are prone to failures such
as the freezing problem due to unrealistic assumptions on
human behaviors [30, 15]. In addition, the hyperparameters
are sensitive to different environments and thus need to be
hand-tuned to ensure good performance [18].

Another line of work trains more expressive crowd nav-
igation policies using imitation learning and reinforcement
learning (RL) [5, 3, 15, 16, 21]. However, these works
focus on navigation in open spaces and ignore obstacles
and constraints. To address this issue, other learning-based
approaches use raw sensor images or point clouds to represent
environments [23, 7, 25, 37]. These end-to-end (e2e) pipelines
have made promising progress with very few assumptions
about the environment. However, to deploy the learned policies
to the real world, these e2e methods need either a large amount
of demonstration data from the real world or a high-fidelity
simulator, both of which are expensive to obtain and prone to
domain shifts between training and testing scenarios [20, 26].

Fig. 1: A split representation of constrained navigation scenario. In a
dynamic scene, human information is obtained from detections by sensors.
For obstacle information, we remove all humans and compute a point cloud
from a known map and the robot’s location. In this way, we can learn a robot
policy with smaller sim2real gaps with a cheap low-fidelity simulator.

In this paper, we ask the following question: Is it possible to
deploy an RL policy for constrained crowd navigation with a
cheap and low-fidelity simulator? The first step is to come up
with an environment representation that is robust to sim2real
gaps from perception. As shown in Fig. 1, we propose to
split the human and obstacle representation and leverage on
processed inputs instead of raw sensor inputs. We represent
humans with detected states and obstacles as computed point
clouds from map and robot localization. With processed states
of humans and objects, the split representation is less affected
by inaccurate simulations of human gaits, visual appearance,
and 3D shapes. As a result, we can train the robot policy in a
low-fidelity simulator, such as the one in Fig. 3, with a much
smaller sim2real gap compared with previous e2e methods.

With the proposed scene representation, we learn a robot
policy that reasons about interactions among different entities.
In constrained environments, agents have limited traversable
spaces and thus interact with each other as well as obstacles
frequently. To capture these subtle interactions, we propose
spatio-temporal (st) graph and derive a novel policy network
from the st-graph. We use three separate attention networks to
address the different effects of robot-human, human-human,
and human-obstacle interactions. After training, the attention



Fig. 2: The spatial-temporal interaction graph and the network architecture. (a) Graph representation of crowd navigation. The robot node is in yellow,
the i-th human node is ui, and the obstacle node is o. HH edges and HH functions are in blue, OH edges and OH functions are in green, and RH edges and RH
functions are in red. The temporal function is in purple. (b) Our network. Three attention mechanisms are used to model the human-human, human-obstacle,
and robot-human interactions. We use a GRU as the temporal function.

networks enable the robot to pay more attention to important
interactions, which ensures good performance when the num-
ber of humans increases and the landscape becomes complex.

II. PRELIMINARIES

A. MDP formulation

We model the constrained crowd navigation scenario as
a Markov Decision Process (MDP), defined by the tuple
⟨S,A,P, R, γ,S0⟩. Let wt be the robot state which consists
of the robot’s position (px, py), velocity (vx, vy), goal position
(gx, gy), and heading angle θ. Let ht

i be the current state of the
i-th human at time t, which consists of the human’s position
and velocity (pix, p

i
y, v

i
x, v

i
y). Let ot be the current observations

of the static obstacles and walls. We define the state st ∈ S
of the MDP as st = [wt,ot,ht

1, ...,h
t
n] if a total number of n

humans are observed at the timestep t, where n may change
within a range in different timesteps.

In each episode, the robot begins at an initial state s0 ∈ S0.
According to its policy π(at|st), the robot takes an action
at ∈ A at each timestep t. In return, the robot receives a
reward rt and transits to the next state st+1 according to an
unknown state transition P(·|st, at). Please refer to Sec. VI-A
in Appendix for the definition of reward function. Meanwhile,
all humans also take actions according to their policies. The
process continues until the robot reaches its goal, t exceeds
the maximum episode length T , or robot collision.

III. METHODOLOGY

A. Scene representation

High-dimensional raw sensor representation suffer from
large sim2real gaps due to the presence of humans and
complex obstacles and landscapes. Instead of investing in ex-
pensive high-fidelity simulators or laborious dataset collection,
we use low-fidelity simulators. To circumvent sim2real gaps,
our scene representation leverages processed information from
perception, maps, and robot localization, which are relatively
easier to obtain and robust to domain shifts.

As shown in Fig. 1, at each timestep t, we split a dynamic
scene into a human representation denoted as ht

1, ...,h
t
n, as

well as an obstacle and constraint representation denoted as

ot. In human representation, the position and velocity of each
human is detected from off-the-shelf human detectors [13, 27,
36]. By representing each human as a low-dimentional state
vector, we abstract away detailed information such as gaits and
appearance, which are difficult to model accurately [31, 20].
To obtain obstacle representation, as shown in Fig. 4 in
Appendix, we first map the environment and process the map
by combining close-by obstacles and approximating obstacle
shapes as polygons. The map processing step is shown from
Fig. 1(a) to Fig. 1(c). During navigation, assuming robot
localization is available, we can compute a “fake” point cloud
by performing a ray tracing algorithm centered at the robot
location, as shown in Fig. 1(c). The “fake” point cloud contains
approximate information on obstacles and constraints, which is
sufficient for robot navigation. It is worth noting that compared
to real point clouds from sensors, our obstacle representation
is not affected by the presence of humans and is less sensitive
to inaccuracies simulations of object appearance or shapes.

B. Structured interaction graph

Interactions among different entities contain essential in-
formation for multi-agent problems [35, 11, 3, 15, 1]. We
formulate constrained crowd navigation as a spatio-temporal
(st) graph, which breaks the problem into smaller components
in a structured fashion [12]. In Fig. 2(a), the robot, all observed
humans, and the observed static environment are nodes in
the st-graph Gt. At each timestep t, the edges that connect
different nodes denote the spatial interactions among nodes.
Different interactions have different effects on robot decision-
making. Specifically, since we have control of the robot but
not the humans, robot-human interactions have direct effects
while human-human interactions have indirect effects on the
robot actions. Since the agents are movable but the obstacles
are static, interactions among agents are mutual while the
influence of static obstacles on agents is one-way. Thus, we
categorize the spatial edges into three types: human-human
(HH) edges (blue in Fig. 2), obstacle-human (OH) edges
(green), and robot-human (RH) edges (red). The three types
of edges allow us to factorize the spatial interactions into HH
function, OH function, and RH function. Each function is a



neural network that has learnable parameters. Compared with
the previous works that ignore some edges [3, 15, 16], our
method allows the robot to reason about all observed spatial
interactions that exist in constrained crowded environments.

Since the movements of all agents cause the visibility of
humans and obstacles to change dynamically, the set of nodes
and edges and the parameters of the interaction functions may
change correspondingly. To this end, we integrate the temporal
correlations of the graph Gt at different timesteps using another
function denoted by the purple box in Fig. 2a. The temporal
function connects the graphs at adjacent timesteps, which
enables long-term decision-making of the robot.

The same type of edges share the same function parameters.
This parameter sharing is important for the scalability of our
st-graph because the number of parameters is kept constant
with an increasing number of humans [12].

C. Structured attention network

In Fig. 2b, we derive our network architecture from the
st-graph. We represent the HH, OH, and RH functions as
feedforward networks with attention mechanisms, referred as
HH attn, OH attn, and RH attn respectively. We represent the
temporal function as a gated recurrent unit (GRU). We use W
and f to denote trainable weights and fully connected layers.

1) Attention mechanism: The attention modules assign
weights to all edges that connect to a node, allowing the node
to attend to important edges or interactions. The 3 attention
networks are similar to the scaled dot-product attention [34],
which computes attention score using a query Q and a key K,
and applies the normalized score to a value V .

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V (1)

where d is the dimension of the queries and keys.
In HH attention, the current states of humans are

concatenated and passed through linear layers to obtain
Qt

HH ,Kt
HH , V t

HH ∈ Rn×dHH , where dHH is the attention
size for the HH attention.

Qt
HH = [ut

1, ...,u
t
n]

⊤WQ
HH

Kt
HH = [ut

1, ...,u
t
n]

⊤WK
HH

V t
HH = [ut

1, ...,u
t
n]

⊤WV
HH

(2)

We obtain the human embeddings vtHH ∈ Rn×dHH from Eq. 1,
and the number of attention heads is 8.

In OH attention, the obstacle point cloud is fed into a
1D CNN, which outputs an obstacle embedding: Kt

OH =
fCNN (ot), where Kt

OH ∈ R1×dOH . Qt
RH , V t

RH ∈ Rn×dRH

are linear embeddings of the weighted human features from
HH attention vtHH .

Qt
OH = vtHHWQ

OH , Kt
OH = vtOW

K
OH , V t

OH = vtHHWV
OH

(3)

We compute the attention score from Qt
OH , Kt

OH , and V t
OH

to obtain the twice weighted human features vtOH ∈ R1×dOH

as in Eq. 1. The number of attention heads is 1.

Similarly, in RH attention, we first embed the robot with
a linear layer: Kt

RH = fR(w
t), where Kt

RH ∈ R1×dRH .
Qt

RH , V t
RH ∈ Rn×dRH are linear embeddings of the weighted

human features from OH attention vtOH .

Qt
RH = vtOHWQ

RH , Kt
RH = wtWK

RH , V t
RH = vtOHWV

RH

(4)

We compute the attention score from Qt
RH , Kt

RH , and V t
RH to

obtain the weighted human features for the third time vtRH ∈
R1×dRH as in Eq. 1. The number of attention heads is 1.

In all three attention networks, we use binary masks that
indicate the visibility of each human to prevent attention to
invisible humans. The masks provide unbiased gradients to
the networks, which stabilizes and accelerates the training.

2) GRU: We concatenate the robot embedding, the obstacle
embedding, and the weighted human features and fed them
into the GRU. Finally, the hidden state of the GRU is input
to a fully connected layer to obtain the value V (st) and the
policy π(at|st). We train the entire network with Proximal
Policy Optimization (PPO) [29].

IV. SIMULATION EXPERIMENTS

A. Simulation environment
Developed with PyBullet [6], our simulator consists of

two scenarios as shown in Fig. 3. We conduct simulation
experiments in random environment in Fig. 3(a). In each
episode, obstacles are initialized with random shapes and
random poses. The initial positions of the humans and the
robot are also randomized. The human goals are set on the
opposite side of their initial positions so that they cross each
other in a circle. The number of humans varies from 2 to 4
and the number of obstacles varies from 7 to 9.

To simulate a continuous human flow, humans will move to
new random goals immediately after they arrive at their goal
positions. All humans are controlled by ORCA [33]. 80% of
humans do not react to the robot and 20% of humans react
to the robot. This mixed setting prevents our network from
learning an extremely aggressive policy in which the robot
forces all humans to yield while achieving a high reward, while
maintaining a enough number of reactive humans to resemble
the real crowd behaviors.

We use unicycle kinematics for the robot. The action
of the robot consists of desired translational and rota-
tional accelerations at = [atrans, arot]. The robot action
space is discrete: the translational acceleration atrans ∈
{−0.05m/s2, 0m/s2, 0.05m/s2} and the rotational acceler-
ation arot ∈ {−0.1 rad/s2, 0 rad/s2, 0.1 rad/s2}. The trans-
lational velocity is clipped within [0m/s, 0.5m/s] and ro-
tational velocity is within [−1 rad/s, 1 rad/s]. The robot
motion is governed by the dynamics of TurtleBot 2i. We use
holonomic kinematics for humans. The speed of humans is
limited to 0.5 m/s to accommodate the speed of the robot.

B. Experiment setup
1) Baselines and ablation models: To validate the effec-

tiveness of the proposed scene representation, we compare our
method with the following baselines:



Fig. 3: Two PyBullet simulation scenarios. (a) Random environment with
random obstacles and circle-crossing humans. (b) Sim2real environment with
fixed obstacles and the random human flow is designed based on the layout.

• Object-centric: The human representation is the same as
our method, while obstacles are represented by the coor-
dinates of their polygon vertices. The obstacle embedding
network is a multi-layer perception instead of 1D CNN.

• Raw point cloud: The humans and obstacles are repre-
sented as raw point clouds from a LiDAR. No human
detection or fake point cloud is available. The point cloud
is fed into a 1D CNN. No attention network is used since
all entities are mixed as a single point cloud.

To validate the effectiveness of the structured graph network,
we experiment with ablations of different attention models to
justify the effect of 3 types of spatial interaction networks.
Everything else except the presence of attention network(s) is
kept the same as our method.

• Ours, RH: The network has only RH attention and does
not have HH or OH attention, similar to previous works
such as [3, 14, 15].

• Ours, RH+OH: The network has only RH and OH
attention and does not have HH attention.

• Ours, RH+HH+OH: The full version of our proposed
network with all 3 attention modules.

2) Training: The policy is trained for 6 × 107 steps in
total. We run 16 parallel environments to collect the robot’s
experiences. The learning rate is 8×10−5 and decays linearly.

3) Evaluation metrics: We test all methods with 500 ran-
dom unseen test cases. Our metrics include success rate
(Success), collision rate (Collision), timeout rate (Timeout),
and average navigation time (NT) in seconds.

C. Results

In Table I and the videos, among the baselines, raw point
cloud performs the worst because the network needs to extract
both human and obstacle features from raw sensor inputs,
which slows down the convergence. Object-centric achieves
better results due to the presence of low-level state informa-
tion but is outperformed by our method, because the vertex
representation is sparse and not always useful for navigation.
For example, among all vertices of a long and thin wall, the
occluded vertices or the vertices outside of the robot field-
of-view are fed into the network, yet none of them affects
navigation. In addition, the vertex representation is sensitive to
the permutation order of vertices, which poses extra challenges

TABLE I: Navigation results in random environment.

Method Success↑ Collision↓ Timeout↓ Time↓

Object-centric 0.63 0.27 0.09 12.02
Raw point cloud 0.58 0.27 0.15 12.02

Ours, RH 0.56 0.28 0.16 12.02
Ours, RH+OH 0.68 0.26 0.06 11.28
Ours, RH+HH+OH 0.75 0.15 0.10 11.75

for learning [2]. In contrast, our representation leverages low-
level human states from detectors, which accelerates the con-
vergence and thus achieves better performance with the same
amount of training budget. For the obstacle representation,
the “fake” point cloud is denser and more relevant to robot
decision-making compared with vertex representation.

Among ablated models, we observe that if we remove
HH attention, the success rate drops by 7% because the
interactions among humans are dense due to the presence
of obstacles and environmental constraints. As a result, a
human constantly changes its trajectories due to other humans.
If we further remove OH attention, the success rate drops
by another 12% because the obstacles limit the traversable
regions of agents, and thus human trajectories are also directly
affected by obstacles. Thus, we conclude that reasoning about
both human-human and human-robot interactions plays an
important role in robot collision avoidance, in addition to
robot-human interactions from previous works.

V. REAL-WORLD EXPERIMENTS

We train our method in sim2real environment in Fig. 3(b)
and transfer the policy to a TurtleBot 2i in a real constrained
indoor environment with pedestrians in a university building.
We define 1 to 3 of human routes and robot routes based on
the environment layout and randomly choose a route for each
agent in each episode. In addition, 1 to 3 static humans are
added. The poses of 11 obstacles are fixed.

We use an Intel RealSense tracking camera T265 to obtain
the pose of the robot. With an RPLIDAR-A3 laser scanner,
we first remove non-human obstacles on a map, and then use
a 2D LIDAR people detector [13] to estimate the positions of
humans. From results (see videos), we observe that the robot
can achieve goals without collisions no matter the pedestrians
react to the robot or ignore the robot. However, the robot fails
if the pedestrians intentionally block its path, since this kind
of adversarial behavior is not simulated during training.

VI. CONCLUSION

In conclusion, to enable robots to navigate in constrained
crowded environments, we propose a structured scene repre-
sentation from preprocessed information. Then, we formulate
the scenario as a st-graph, which leads to the derivation of
a robot policy network that reasons about different interac-
tions during navigation. We train the network with RL and
demonstrate good results in both simulation and the real world.
For limitations and future work, please refer to Sec. VI-B in
Appendix.
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Fig. 4: Illustration of map processing. Using off-the-shelf map processing
techniques [17], we can combine and smooth the edges of obstacles with
irregular shapes. As a result, the processed map produces the obstacle point
cloud representation, which introduces very small sim2real gaps. In the two
raw maps on the left, we overlay the processed map on top of them for
visualization purposes.

Fig. 5: A two-level hierarchical planner. To enable long-horizon navigation,
we can treat our method as a local planner and combine it with a global
planner.

APPENDIX

A. Reward function
The reward function awards the robot for reaching its goal

and penalizes the robot for collisions with or getting too close
to humans or obstacles. In addition, we add a potential-based
reward shaping to guide the robot to approach the goal:

r(st, at) =


−20, if dtmin < 0

2(dtmin − 0.25), if 0 < dtmin < 0.25

20, if dtgoal ≤ ρrobot

2(−dtgoal + dt−1
goal), otherwise.

(5)

where dtmin is the minimum distance between the robot and
any human or obstacle at time t, and dtgoal is the L2 distance
between the robot and its goal at time t. Intuitively, the
robot gets a high reward when it approaches the goal while
maintaining a safe distance from dynamic and static obstacles.

B. Limitations and future work

Our work encompasses the following limitations, which
opens up opportunities for future work:

1) The robot only achieves a 75% success rate when it
only navigates for 3 to 4 meters from start to goal.
The task horizon and success rate are not enough for
robot deployment in real applications such as last-mile
delivery. To address this issue, as shown in Fig. 5, we
plan to adopt a hierarchical planner, which consists of a
global planner that outputs waypoints, and a local plan-
ner that takes waypoints and performs low-level control.
The current model can be used as the local planner.
Possible options for the global planner include sample-
based planners such as A∗ and RRT and learning-based
policies.

2) As Sec. V discussed, the robot policy is overfitted to
the simulated human behaviors. However, the simulated
humans do not capture all the nuanced behavior patterns
of real humans. A more realistic human motion model
is necessary, which might need to be learned from real
pedestrian data [4]. In addition, adversarial RL training
may also improve the robustness of the robot policy with
respect to changes in human behaviors [22, 24].
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