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Abstract—Ignoring the interactions between agents during
motion planning in multi-agent environments can result in
overly conservative or opaque navigation behaviors, and in dense
crowds, it may lead to the so-called Freezing robot problem.
Although coupled planning can mitigate these issues, it typically
incurs high computational costs, especially as the number of
agents increases. To enhance interaction while limiting the
computational complexity, we formulate the interactions as an
underactuated system and propose to leverage the Social Forces
Model (SFM) as the pedestrians’ response dynamics. The SFM
is a well-established model widely used for describing pedestrian
behaviors. Unlike deep learning models that require extensive
training data, SFM offers interpretability and adaptability across
various environments. We use Model Predictive Path Integral
Control to solve the optimization problem, demonstrating that
by accounting for interactions, the robot can effectively leverage
the behavior of other agents. Additionally, we show that when
combined with a specific cost function, the robot is able to plan
motions that decrease its impact on surrounding pedestrians.

I. INTRODUCTION AND RELATED WORK

The rise of autonomous mobile robots in our daily envi-
ronments makes it essential to ensure their safe and efficient
interaction with pedestrians. This necessitates that robots can
accurately predict the behavior of the surrounding pedes-
trians. In recent years, prediction models based on various
deep neural network architectures have demonstrated notable
progress in both prediction accuracy and scalability [5, 8, 17].
Traditionally, these prediction models are used to forecast the
future trajectories of surrounding pedestrians. Subsequently,
a planning step follows, during which the robot plans its
trajectory in response to these predictions. This invariably
results in the pedestrians being solely treated as moving
obstacles, fostering a one-way interaction where only the robot
adjusts its behavior. This can give rise to overly conservative
or opaque navigation behaviors, see the left column in Fig. 1,
and in dense crowds, it may lead to the so-called Freezing
Robot Problem (FRP) [14], even when perfect predictions
are considered. Hence, performing coupled prediction and
planning and, thus, joint collision avoidance is crucial for
realizing decision-making that is more interactive and akin
to human behavior.

An important body of work addresses multi-agent inter-
actions from a game-theoretic perspective, specifically using
general sum dynamic games [4, 7]. Since each agent’s action
depends on the decisions of the others, solving games presents

Fig. 1: Robot (blue) navigating among pedestrians (orange).
Crosses represent the goals, respectively. Transparent circles
indicate the future plan for the robot and the predicted behavior
of the pedestrians.

a considerable computational challenge, particularly with an
increasing number of agents. The computational complexity
of these models imposes constraints on their applicability.
The authors in [13] apply Model Predictive Path Integral
Control (MPPI), a parallelizable sampling-based Model Pre-
dictive Control (MPC) algorithm, assuming knowledge of the
other agents’ objective functions and predicting their goals
using the Constant Velocity Model (CVM). Nevertheless, the
computational complexity scales linearly with the number of
agents if a constant number of samples is assumed while the
sample efficiency decreases.

A different approach is presented by [2], which bridges the
gap between the use of prediction models discussed previously
and coupled planning. They utilize predictions as an initial
guess and incorporate an objective function to encourage
proximity to these predictions. To reduce the computational
complexity, [11] formulate the interaction between human-
driven vehicles and autonomous vehicles as an underactuated
dynamical system, meaning that the robot directly influences



its own state and indirectly the state of the humans. The dy-
namics model thus includes the interaction dynamics between
the agents. However, evaluating the dynamics model still
requires solving for the optimal human response. Additionally,
it requires the identification of the human objective function.

To address these issues, rather than estimating objectives
explicitly and online, [3] build on top of the pedestrian predic-
tion literature and learn an interactive multi-agent prediction
policy. Using the policy they formulate the multi-agent motion
planning problem as an optimization problem over only the
ego agent’s action sequence.

Instead of learning a multi-agent motion policy, we propose
to use the Social Forces Model (SFM) [6]. The SFM is a
widely used and well-established model for describing the mo-
tion of pedestrians, e.g. in simulations for benchmarking [15].
It offers several advantages: it provides a well-established and
interpretable framework for modeling pedestrian interactions,
it does not require training and therefore does not rely on
available data of the considered context, and it can be easily
adapted to different environments. We solve the multi-agent
underactuated motion planning problem using MPPI.

II. PROBLEM FORMULATION

A. Preliminaries

a) Social Forces Model (SFM): The SFM [6] is a widely
used and well-established model for describing the motion
of pedestrians. It considers three main effects that determine
the motion of a pedestrian i: the attraction towards their
destination f idest, the repulsive effects of static obstacles f istatic,
and the repulsive effects of other agents f idyn. At time t, the
SFM describes the change in velocity through the composition
of social forces resulting in
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where pdest, pstatic, and pdynamic are weighting parameters
implemented according to PedSim1. We make use of the SFM
formulation presented in [9]. When a pedestrian encounters no
disruptions, they move from their current position p towards
their goal position pg at a specific desired speed vdes. The
destination force f idest is determined according to

f idest =
1

τ
(vdese0 − v),

where e0 = (pi
g − pi)/||pi

g − pi|| is the desired direction of
motion, v is the current velocity, and τ is a relaxation time.
The static obstacle repulsive force f istatic is defined by:

f istatic = ae−di/b,

1https://github.com/srl-freiburg/pedsim ros/tree/master

where di is the orthogonal distance of the i-th pedestrian to
the obstacle. The pedestrian interaction force f idyn is given by

f idyn =
N∑

j=0,j ̸=i

f idyn,j, (1)

f idyn,j = −Ae−dij/B
[
e−(n′Bθij)2tij + e−(nBθij)2n

]
, (2)

where dij denotes the distance between two pedestrians i and
j, and θij denotes the angle between the interaction direction
tij and the vector pointing from pedestrian i to pedestrian j.
They are defined as follows:

dij = ||dij || = ||pj − pi||, (3)

Dij = λ(vi − vj) + dij/dij , (4)

tij = Dij/||Dij ||, (5)
B = γ||D||, (6)

where A, γ, n, n′, and are model parameters.
In this work, we make use of the SFM to represent the

response dynamics of pedestrians. We choose the SFM param-
eters according to [9] which are summarized in Table I. We
do not consider static obstacles; however, they can be easily
incorporated if needed.

b) Model Predictive Path Integral Control Algorithm:
MPPI can solve optimal control problems for discrete-time
dynamical systems xt+1 = f(xt, ũt) with state x, timme-
step t, and noisy input ũ with variance Σ and mean u. The
mean input will be provided to the system. The algorithm
generates M input sequence samples Ũm with m ∈ [1,M ]
from a distribution N (ut, νΣ) over a horizon K with ν being
a scaling factor. Using Ũm and the dynamics model, the state
sequence is generated over a horizon K. For each sample, the
cost consisting of a stage and a terminal cost is computed. The
input sequence U∗, which approximates the optimal control
input sequence, is computed using importance sampling. For
more information, we refer to [13, 16].

B. Problem Statement

We consider a scenario where a mobile robot, must navigate
from an initial position p0 to a goal position pg in the
R2 plane populated by N pedestrians, each also navigating
towards its respective goal position. The robot’s physical
state at time step t is denoted as x0

t ∈ XR, while each
pedestrian’s respective physical state is denoted by xi

t ∈ XH

for i ∈ {1, . . . , N}.
Notation: We omit the indice when referring to the col-

lection of variables over the indice. For example, xt =
(x0

t ,x
1
t , . . . ,x

N
t ) denotes the joint state of all agents at time

step t and x = (x0,x1,x2, . . . ,xK) the sequence of joint
states over a time horizon which spans K discrete steps. We
use the superscript ¬i to denote a collection of variables over
all agents except agent i.

At every time step t, each agent influences the next joint
state by applying the control input ui

t, respectively. We refer
to the joint control input at time t as ut. We assume that the



joint state xt is markovian and evolves dynamically according
to the discrete-time dynamics

xt+1 = f(xt,ut).

We seek to solve a motion planning problem for an under-
actuated system:

û0 = argmin
u0

K−1∑
k=0

c0k(xk,u
0
k) + c0K(xK) (8)

s.t. xk+1 = f(xk,uk), (7a)
x0 = xinit, (7b)

ûi
k = argmin

ui
k

cik(xk,u
i
k), (7c)

gi(xk) ≤ 0, (7d)
∀i ∈ {1, . . . , N},∀k ∈ {0, . . . ,K − 1}, (7e)

where x0 denotes the joint state at the current time t = 0
and u0 = (u0

0, . . . ,u
0
K−1) is the sequence of robot control

inputs. Collision avoidance constraints are imposed by (7d).
With u0 the robot directly controls its state and indirectly
influences x¬0 through (7c). The pedestrians’ plans become
a function of the robot’s input. In contrast to formulating the
interactions as a joint optimization, each pedestrian computes
their best response to the other agents instead of trying to
influence them. Note, that this formulation assumes that the
pedestrians can estimate the robot’s future states.

While the cost c0k is a design parameter, the cost functions
cik of the pedestrians are typically unknown. In this work, we
propose to use the well-known SFM to provide analytical re-
sponse dynamics instead of solving for the optimal pedestrian
response ũi

k. We consider a second-order point mass model
for the dynamics of both the robot and the pedestrians.

III. METHOD

In this section, we introduce the Social-Forces-Informed
Interaction-Aware Model Predictive Control (SoFIIA-MPC)
framework. Instead of solving for the optimal pedestrian
response at each iteration like [11], we make use of a response
policy that implicitly encodes the pedestrians’ cost function.
Contrary to [3], we do not learn a policy of the other agents
but make use of the well-established SFM.

A. Social-Forces-Informed Interaction-Aware Model Predic-
tive Control

We assume that a parameterized approximation π̂i
θ(xt) =

argminui
k
cik(xk,u

i
k) of the pedestrians’ response dynamics

exists. This reduces the general multi-agent interaction prob-

lem to a single-agent optimization problem:

û0 = argmin
u0

K−1∑
k=0

c0k(xk,u
0
k) + c0k(xK) (8)

s.t. xk+1 = f(xk,uk), (8a)
x0 = xinit, (8b)

ũi
k = π̂θi(xk), (8c)

gik(xk) ≤ 0, (8d)
∀i ∈ {1, . . . , N},∀k ∈ {0, . . . ,K − 1}. (8e)

We approximate πi
θ(xt) using the SFM resulting in

π̂i
θ(xt) = pdestf

i
dest(xt) + pstaticf

i
static(xt) + pdynf

i
dyn(xt).

B. Cost Function

We consider two cost function designs: one part addresses
the costs related to the ego agent cego, and the other part aims
to influence the behavior of other agents caffect. We design cego
to encourage the robot to reach its goal, to avoid collisions,
and to maintain a velocity limit. The cost terms are defined as
follows:

cego = cgoal,0 + cvel−limit + ccollision, (9)
caffect = (wegocgoal,0 + wotherscgoal¬i)/N (10)

+ cvel−limit + ccollision.

Collisions between the robot and a pedestrian and velocities
higher than a maximum velocity are penalized with a constant
cost. The goal cost of agent i is defined as

cgoal,i = ||pi
k − pi

g||/||pi
0 − pi

g||, (11)

and the goal cost of the other agents ¬i is defined as

cgoal¬i =
N∑
j ̸=i

cgoal,j. (12)

IV. RESULTS
We consider two versions of our planner: SoFIIA-MPC

using cego and SoFIIA-MPC-affect using caffect. Specifically,
we consider a case with wego = 0.8 and wothers = 1. In this
section, we compare our planners with the following baselines:
1) MPC-CVM: Predict-then-Plan approach. Assumes that
the pedestrians continue moving with their current velocities
and uses cego, 2) MPC-SFM: Predict-then-Plan approach.
The behavior of the pedestrians is predicted using the SFM
assuming that the robot also follows the SFM, uses cego.

We evaluate the different planners in simulation, with the
pedestrian behavior modeled using the SFM. While the current
evaluations do not provide insights into how well SoFIIA
performs in environments with real pedestrians, these exper-
iments offer valuable insights into the benefits of accounting
for interactions in planning. MPC-SFM incorporates the true
model for the simulated pedestrians. However, an assumption
about the robot’s future behavior has to be made to predict
the pedestrians’ future behaviors. To generate the SFM pre-
dictions, we assume that the robot behaves as an SFM agent.



Fig. 2: Metrics over 10 random scenarios. We show each metric for the different planners separated by agent type, i.e.,
robot/ego-agent and other agents. For the other agents we consider the mean value.

Fig. 3: SoFIIA-MPC: Time to goal over different social
weights pdyn for head-on scenario with two agents.

Since we consider the robot as an SFM agent, the SFM pre-
dictions inherently account for interactions between the robot
and the pedestrians. The CVM was shown to outperform even
state-of-the-art learning-based prediction models [12] and was
applied in many state-of-the-art motion planners [1]. We solve
the MPC problem using the MPPI-torch implementation2 [10]
with a horizon K of 20 time-steps, and a step-size ∆t = 0.1s.
Furthermore, we evaluate how the cost function can be used
to adapt the behavior.

A. Comparative Analysis of Motion Planning: Non-Reactive
vs. Reactive Agent Models

We first show that by considering the interactions the
robot applying SoFIIA-MPC can exploit the other agents, see
Fig. 3. The achieved time to goal for the robot decreases with
increasing socialness of the other agent.
Furthermore, we compare the navigation metrics over 10
random scenarios. We consider the following metrics:

• Travelled Distance Ratio: Distance to the goal divided by
the straight line distance to the goal,

• Time to goal ratio: Time to goal divided by the time
required to reach the goal in a straight line with maximum
speed,

2https://github.com/tud-airlab/mppi torch/tree/main

• Minimum distance: The minimum distance between
agents.

The results, presented in Fig. 2, show that the Travelled
Distance Ratio of the robot decreases as the planner accounts
more for interactions.

B. Exploiting Interactions for Desired Agent Behaviors

By explicitly considering the interactions, it is possible to
influence the other agents to certain behaviors. While previous
works in the autonomous driving field [11] demonstrate that
cars can be slowed down or influenced to merge into another
lane, these strategies are not directly applicable in the social
navigation context. This is because the considered driving
scenarios are more structured, e.g., by considering lanes. Thus,
we set the robot’s objective to navigate while trying to reduce
its influence on the other agents. In Fig. 2 it can be seen that
we were able to decrease the Time to Goal ratio for the other
agents. However, these are preliminary results, which have to
be further evaluated for a higher number of scenarios.

V. CONCLUSION

In this work, we addressed the challenge of enhancing
interaction in multi-agent motion planning while maintain-
ing computational efficiency. Specifically, we formulate the
interactions as an underactuated system and leverage the
Social Forces Model (SFM) to represent pedestrians’ response
dynamics. Since our aim was to evaluate the effect of ac-
counting for interactions, we assumed the parameters of the
SFM as well as the pedestrians’ goals to be known. How the
parameters can be estimated remains to be explored. Future
work will focus on further validating our approach in more
diverse scenarios including static obstacles and in real-world
scenarios.

TABLE I: Parameters

SFM A 4.5 SFM τ 0.54
SFM γ 0.35 Horizon K 20
SFM n 2.0 Radius agents 0.3m
SFM n′ 3.0 Time step ∆t 0.1 s
SFM λ 2 Horizon K 20
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