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Abstract—In robotics, ensuring that autonomous systems are
comprehensible and accountable to users is essential for ef-
fective human-robot interaction. This paper introduces a novel
approach that integrates user-centered design principles directly
into the core of robot path planning processes. We propose a
probabilistic framework for automated planning of explanations
for robot navigation, where the preferences of different users
regarding explanations are probabilistically modeled to tailor
the stochasticity of the real-world human-robot interaction and
the communication of a robot’s decisions and actions towards
humans. This approach aims to enhance the transparency of
robot path planning and adapt to diverse user explanation
needs by anticipating the types of explanations that will satisfy
individual users.

I. INTRODUCTION

The lack of transparency in robot decision-making [9, 21]
impedes the faster integration of robots into human society. To
facilitate this integration, robots must exhibit characteristics
reminiscent of social robots [6]. Social robots generally fall
into the categories of service (utilitarian) or assistive (af-
fective) [3] robots. Thus, they should respect social norms
of human interaction and behavior. Despite the challenges
in acquiring such social norms, the presence of robots has
increased rapidly, thus escalating the demand for explicability
in robot actions [15].

Offering explanations for robot actions has been shown to
yield favorable effects on human trust [14] and comprehen-
sion [20]. Moreover, it is pivotal in nurturing effective human-
robot interaction (HRI) [18]. An explainable robot is also
perceived as more socially adept [2]. Despite the manifold
advantages that robots bring, a deficiency in transparency
and accountability persists concerning their decision-making
processes [10]. The complexity of most robot behaviors and
human-robot social interactions augments this challenge.

We constitute a problem of explainability in robotics in
the context of robot path planning in social settings, i.e.,
social navigation. Imagine a navigating robot experiencing a
planner failure without successful recovery behavior. Such a
robot could cause harm to people around it, depending on the
environment and navigation context. To justify its behavior
and mitigate negative consequences, the robot should be able
to explain the underlying reasons for its behavior. However,
different people, i.e., explanation recipients (explainees), may

have different preferences regarding explanations. The robot
must be able to judge how to characterize its explanations
based on the preferences of the explainees. To give robots this
ability, we conceptualize generating explanations as a proba-
bilistic planning problem, where explanations, conditioned on
user explanation preferences, can be planned as other robot
actions, e.g., joint motion.

II. AI PLANNING

Automated Planning and Scheduling, commonly known
as AI Planning, is a subfield of Artificial Intelligence (AI)
dedicated to devising strategies for achieving specified objec-
tives through a sequence of actions. It involves formalizing
planning problems, where an AI system must decide on a
set of actions to transition from an initial state to a goal
state, considering constraints and available resources. A cor-
nerstone in AI Planning is the Planning Domain Definition
Language (PDDL), introduced in 1998 [1], which provides a
standardized way to represent planning problems. PDDL has
been widely adopted in various domains, such as robotics,
logistics, and space exploration. For example, NASA’s Mars
rovers have used PDDL to plan and execute daily activities
autonomously, demonstrating the practicality and robustness
of discrete planning in managing complex and dynamic tasks
in unknown environments.

Probabilistic planning extends the traditional discrete plan-
ning framework by incorporating uncertainty and stochastic el-
ements into decision-making. This is effectively modeled using
the Relational Dynamic Influence Diagram Language (RDDL),
developed by Sanner [17] in 2010. RDDL allows for the
representation of probabilistic effects and relational structures,
making it well-suited for environments where actions have
uncertain outcomes. Probabilistic planning is particularly valu-
able in medical treatment planning, where patient responses to
treatments are inherently uncertain, or in autonomous driving,
where environmental conditions and other drivers’ behaviors
can be unpredictable. However, while probabilistic planning
offers a more nuanced and realistic approach, it has significant
computational challenges. The need to account for multiple
possible outcomes increases the complexity of planning al-
gorithms, often requiring more computational resources and
sophisticated techniques to find optimal solutions. Despite



these challenges, the ability to reason under uncertainty makes
probabilistic planning indispensable for creating adaptive and
resilient AI systems capable of operating effectively in the real
world.

III. RELATED WORK

Explainable AI Planning (XAIP) in robotics has gained at-
tention recently. Cashmore et al. [7] have laid the groundwork
by integrating classical planning techniques with explainability
frameworks to make robotic actions more interpretable to hu-
man users. A few studies have focused on interactive systems
where robots can justify their actions and decision-making
processes in real time—a crucial advancement for collabo-
rative human-robot environments. For instance, research by
Sreedharan et al. [19] has introduced approaches for producing
contrastive explanations that help users understand why a robot
chose one plan over another. Additionally, incorporating user
feedback to refine and improve the explainability of robotic
actions [8] represents a significant step towards creating more
intuitive and user-friendly robotic systems.

In motion and path planning literature, explanations en-
compass failure instances and contrastive scenarios. Failure
explanations explain the cause of failure, while contrastive
explanations explain why a planner selects trajectory A over
an expected trajectory B. User explanation queries regarding
plans typically take a contrasting form, such as “Why A
over B?” [13]. Brandao et al. [4, 5] present a preliminary
taxonomy of explainable motion planning techniques. Fur-
thermore, they introduce two explainable motion planning
strategies—optimization-based and sampling-based—capable
of addressing both failure and contrastive questions. Their
strategies imply using inherently explainable motion planners
or making existing planners inherently explainable. Rosenthal
et al. [16] introduced a verbalization strategy for robots to
provide verbal explanations.

Although there is some work on explainable automated
planning, there is only one work on automated explanation
planning to our knowledge. Halilovic and Krivic [12] introduce
deterministic planning of explanations using Planning Domain
Definition Language (PDDL) 2.1 [11]. Using the deterministic
nature of PDDL, they showed that the planning of explanation
is possible, along with other robot actions. However, they
disregard the stochastic nature of social interaction and the un-
certainty in robot reasoning of human explanation preferences.
We model the robot’s reasoning about human explanation
preferences as a probabilistic automated planning problem.
The planning aspect of our explanations involves the content,
timing, and modality aspects, ensuring that explanations are
provided when most beneficial to the user.

IV. PROBABILISTIC PLANNING OF EXPLANATIONS

RDDL is a powerful formalism for modeling decision-
theoretic planning problems involving stochastic dynamics
and complex relational structures. When modeling human
explanation preferences in RDDL, we can treat these pref-
erences as probabilistic variables that influence the robot’s

decisions regarding explanation representation, detail level,
duration, and scope. To model human explanation preferences
as probabilistic variables in RDDL, we define several key
components:

State Variables

State variables represent the current state of the robot
and the human user’s preferences. Let S be the set of state
variables, including the robot’s state Sr = {sr1, sr2, ..., srn}
and human preferences Sh = {sh1, sh2, ..., shm}. Human pref-
erences can be represented as probabilistic variables Ph, which
include preferences for explanation representation Pr, detail
level Pdl, duration Pd, and scope Ps: Ph = {Pr, Pdl, Pd, Ps}.

Action Variables

Action variables represent the possible actions the robot can
take, including providing explanations. Let A be the set of
action variables, including actions related to explanations A =
{aexplain, amove, atask}.

Reward Functions

Reward functions capture the utility of different outcomes
based on how well the robot’s explanations meet the human’s
preferences. The reward function R reflects the satisfaction
of human preferences and the successful completion of tasks:
R(s, a) is a function of the state s ∈ S and action a ∈ A,
incorporating human preference variables Ph.

Transition Functions

Transition functions define how state variables evolve based
on actions and probabilistic effects. The transition function T
defines the probability of moving from one state to another,
considering the probabilistic nature of human preferences:
T (s′|s, a) where s’ is the next state, s is the current state,
and a is the action taken.

Explanation Representation

Let Ps be a Bernoulli random variable representing the
probability that the user prefers explanations of a particular
representation (textual, visual): Pr = P (Er = textual), where
Er is an indicator variable (1 if the user prefers a textual
explanation, 0 otherwise).

Explanation Detail Level

Let Pdl be a Bernoulli random variable representing the
probability that the user prefers explanations of a certain detail
level t: Pdl = P (Edl = rich), where Edl is an indicator
variable (1 if the user prefers an explanation with a rich level
of detail, 0 otherwise).

Explanation Duration

Let Pd be a Bernoulli random variable representing the
probability that the user prefers explanations of a particular
duration (short, long): Pd = P (Es = short), where Es is an
indicator variable (1 if the user prefers a short explanation, 0
otherwise).



Explanation Scope

Let Ps be a Bernoulli random variable representing the
probability that the user prefers explanations of a particular
scope (local, global): Ps = P (Es = local), where Es is an
indicator variable (1 if the user prefers a local explanation, 0
otherwise).

A. Integration of explanation preferences into RDDL

By modeling human explanation preferences as probabilistic
variables in RDDL, the robot can probabilistically reason
about these preferences and structure its explanations accord-
ingly. This approach allows the robot to optimize its actions
to align with human preferences, enhancing the effectiveness
and satisfaction of its explanations.

Transition Function

c s t a t e F l u e n t
{

E r : { t e x t u a l , v i s u a l } ;
E dl : { r i c h , poor } ;
E d : { long , s h o r t } ;
E s : { l o c a l , g l o b a l } ;

}

In this example, the RDDL domain file defines the possible
states of the human explanation preferences. The action of ex-
plaining must incorporate its attributes (representation, detail
level, duration, and scope) in their current states.

To approach explaining as task generation, the RDDL
problem file specifies the initial state of the system and the
probabilities associated with different modalities and their
conditional probabilities with representations, detail levels,
durations, and scopes (see Figure 1). This setup serves as a
probabilistic model of human preferences for explanations in
human-robot interaction, facilitating the planning and genera-
tion of explanations that align with user preferences.

Fig. 1: Human preferences are represented as probabilities.
Probabilities of variables that are values of the random
preference variables, e.g., visual and textual for explanation
representation, are instantiated such that the sum of their
probabilities is 1.0 to have a valid probability distribution.

In the domain file (see Figure 2), values of preference
variables are propagated through states using the Bernoulli
function. Such behavior allows the robot to respect human
preferences.

Fig. 2: Propagation of preference variables through Bernoulli
functions. Robots can probabilistically track changing human
preferences but also sometimes make mistakes, which more
closely mimics real behavior compared to using only deter-
ministic planning.

Figure 3 shows the possible plan where human explanation
preferences are incorporated.

Fig. 3: Robot librarian starts from start location and heads
towards book location to pick up the book. After picking up
the book, it heads towards the visitor’s location to hand it to
the visitor. Assuming that the robot is too late, it explains its
actions to the visitor while choosing visual representation, the
poor level of detail, the long duration, and the global scope
of its explanation while trying to respect visitor explanation
preferences.

V. DISCUSSION

To customize domain and problem files for different do-
mains, it is enough to do the following:

1) Modifying Non-Fluents: Adjusting the initial and condi-
tional probabilities in the ”non-fluents´´ section of the
problem file to reflect different scenarios.

2) Adjusting Initial State: Modifying the ”init-state´´ sec-
tion to set different starting conditions for the human
and robot states.

One of the primary contributions of this work is the de-
velopment of a flexible framework that can adapt to various
contexts and user needs. By defining explanation attributes
(representation, detail level, duration, and scope) and inte-
grating them into a probabilistic model, we can generate
explanations tailored to individual preferences. This level of
customization is crucial in diverse application areas ranging
from assistive robotics to customer service and educational
robots. The RDDL domain and problem files are templates
easily modified for different scenarios, showcasing the model’s
versatility.

The personalized explanations generated by our model have
significant implications for human-robot interaction (HRI). Ef-
fective communication is a cornerstone of successful HRI, and
explanations that align with user preferences can significantly



enhance the user experience. When users receive explanations
in a format they find intuitive and timely, their understanding
of the robot’s actions improves, leading to increased trust and
collaboration. Moreover, our model’s ability to account for
different user states—calm, confused, and stressed—ensures
that explanations are personalized and context-aware.

Despite its strengths, our approach does have some lim-
itations. The accuracy of the probabilistic model heavily
depends on the quality and representativeness of the initial
and conditional probabilities. In real-world applications, these
probabilities may need to be fine-tuned based on empirical
data, which can be time-consuming and resource-intensive.
Additionally, while RDDL provides a robust framework for
modeling, its complexity can be a barrier to those unfamiliar
with its syntax and semantics. This might limit the immediate
applicability of our approach to practitioners without a back-
ground in RDDL or similar formal languages.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel approach to modeling expla-
nation preferences in human-robot interaction by integrating
probability theory and Relational Dynamic Influence Dia-
gram Language (RDDL). Our model encapsulates different
attributes that influence user preferences: representation, level
of detail, duration, and scope, by employing a probabilistic
framework. This framework enables the generation of person-
alized explanations that cater to the needs and expectations
of users interacting with robots. We believe that personalized
explanations of robot navigation are very important factors in
social robot navigation. The better robots can explain their
navigation, the better humans can understand them. Such
explanations can be used as input in human-in-the-loop social
navigation learning research. We demonstrated the flexibility
and adaptability of our model to various scenarios by providing
a generalized RDDL domain and a problem instance. Our
model systematically accounts for users’ preferences when
receiving robot explanations by leveraging conditional proba-
bility distributions and utility functions.

Future work will explore the extension of this model to
incorporate dynamic user feedback, allowing for real-time
adaptation of explanation strategies based on user responses.
Additionally, integrating machine learning to refine the proba-
bilistic parameters and utility functions could further enhance
the personalization capabilities of the model. For example,
reinforcement learning algorithms could be used to adjust
the model dynamically as more data about user preferences
and states becomes available. This would enable the robot to
improve its explanation strategies continuously over time.

Including a wider range of explanation attributes, such
as emotional tone and interactivity, could further enrich the
explanations and make them more engaging. Exploring the
cross-cultural applicability of the model would also be valu-
able, as preferences for explanations can vary significantly
across different cultural contexts. Another promising direction
is the integration of real-time user feedback mechanisms. By
allowing users to provide immediate input on the explanations

they receive, the model can quickly adapt and personalize
future explanations even more effectively. This feedback loop
would enhance the personalization process and empower users
to have greater control over their interactions with robots.

Overall, our research contributes to the growing body of
work aimed at making human-robot interaction more intu-
itive and effective. By focusing on the critical aspect of
explanation generation, we have laid the groundwork for
developing personalizable intelligent systems that perform
tasks efficiently and communicate their actions transparently
and understandably. Personalized explanations can lead to
improved user satisfaction, a better understanding of robotic
actions, and, ultimately, a more harmonious integration of
robots into everyday life.
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