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Abstract— The presence of robots amongst pedestrians affects
them causing deviation to their trajectories. In order to better
study and navigate around this issue, we introduce a simulation
framework that repetitively measures and benchmarks the
deviation in trajectory of pedestrians due to robots driven by
different navigation algorithms. In this paper, we enhance the
traditional Social Force Model (SFM) by incorporating a novel
force component that accounts for the influence of robots on
pedestrian behavior, resulting in the Social Robot Force Model
(SRFM). This extended model improves the prediction accuracy
of pedestrian trajectories disrupted by robots. The pedestrians
are then simulated using the SRFM with and without forces
affecting them due to the presence of the robot to objectively
measure the deviation to their trajectory caused by the robot
in 2 different scenarios.

I. INTRODUCTION

The increasing presence of robots in everyday life has
made the issue of social navigation of mobile robots among
pedestrians more relevant than ever.

Research in the field of social navigation primarily re-
volves around three approaches: traditional model-based
methods [1], data-driven learning approaches [1], and hybrid
approaches that combine elements of both [2], [3]. Tradi-
tional model-based methods use physical models, such as
force-based [1] or fluid motion [1], under specific assump-
tions to predict pedestrian movement and, in turn, guiding
the robot. Recently, with advances in computing power,
data-driven methods using machine learning have gained
popularity. These methods involve collecting datasets of
pedestrian and robot interactions to train models that predict
pedestrian behavior and guide the robot accordingly.

Social robot navigation focuses on two main parts: the
social aspect and the robot navigation. While robot navi-
gation has been extensively studied and solved using both
traditional and data-driven approaches, a repetitive measure
for the affect of robots on pedestrians remains a dynamic area
of research [1], [4]. Since pedestrian behavior in the context
of social norms is not a simple modelling problem due to
its complex nature, learning-based approaches have become
the preferred approach for approximation. Typically, this
involves collecting data from a teleoperated robot navigating
through crowds in a socially compliant manner.

Recently, Hirose et al. [4] introduced a metric for mea-
suring effect of robots on pedestrians by evaluating the
counterfactual perturbation of human trajectories caused by
the presence of a robot in the scene. However, the dynamic
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Fig. 1: Example scenario of a human navigating to a goal. While
many of the forces used in the social force model are well studied,
such as attraction to the goal or repulsion from obstacles, such as
the pillar, the robot force is not well understood, even though it
significantly affects human behavior.

application of this metric remains a challenge, especially
when relying on pre-recorded datasets, which limits the
ability to test policies in scenarios different from those in
the dataset.

To address these issues, we present a simulation frame-
work designed to repetitively and objectively measure the ef-
fect of robots driven by different social navigation algorithms
on pedestrian trajectory for evaluation and benchmarking.
Furthermore, we introduce a new force-factor to the social
force model (SFM) [5], [6] inspired by the work done
by Ferrer et al.[7], to model the robot’s influence to the
pedestrian walking behavior without modeling it as a simple
obstacle. This social robot force model (SRFM) is used to
account for changes in the pedestrians’ behavior that can’t
be modeled adequately by the original forces of the SFM.
Our framework simulates pedestrian behavior based on real-
world datasets according to our SRFM, and allows for the
creation of scenarios not covered in the original dataset. This
flexibility enables the development of navigation policies for
specific scenarios such as complex hallways as well as gener-
alized scenarios such as pedestrian crossings. To validate this
claim, we developed and evaluated a reinforcement learning
(RL) policy that uses SRFM to learn a human aware robot
navigation behavior by minimizing the influence of robot
force on the pedestrian trajectory.

II. OUR APPROACH

In this work we present a novel simulation and benchmark
environment for learning, evaluation, and comparing of social
navigation policies under various known and new situations.

In this section, we introduce the extended social force



model that includes the repulsion effect of navigating robots
on pedestrians. We explain in detail our methods for learning
the parameters of the social force, defining an objective social
metric, setting up a simulation environment for training
a navigation policy for mobile robots, and evaluating our
learned policy against other state-of-the-art algorithms using
this simulation environment.

A. Social Robot Force

The original SFM as defined by Equation 1, uses three
major forces - attraction towards the goal fa, repulsion
from other pedestrians in the vicinity fp, and repulsion
from obstacles in the surroundings fo. Our modified SFM,
represented by Equation 2, introduces an additional force
component - repulsion from the robot fr.

F = fa + fp + fo (1)

F = fa + fp + fr (2)

For the sake of simplification, in the paper we omit the
force of repulsion from obstacles. However, this factor is well
studied and can be added to the equation for further research.
The different force components are calculated in distinct
ways. The attraction force towards the goal fa is described
in Equation 3. τ , representing the time a pedestrian takes to
adjust their current velocity vi to match the desired velocity
v0 (the ideal velocity desired by the pedestrian to move
towards the goal) and has to be determined, i.e., learned. The
repulsion forces from pedestrians fp, obstacles fo, and robots
fr share the same formula as depicted in Equation 4. In this
function, the parameters to be learned are A, indicating the
strength of the force, and B, representing the distance from
which the force starts to have a significant effect. d is the
sum of the radii of the interacting pedestrians. x is the actual
distance between the interacting pedestrians. Additionally, an
anisotropic value, as shown in Equation 5 is used to show
that pedestrians experience stronger repulsive forces from
those in front of them.

fa =
vi − v0
τ

(3)

fp = Ae
d−x
B ψ (4)

ψ = λ+ (1− λ)
(1 + cos(ϕ))

2
(5)

This force decreases to the sides and becomes zero behind
the pedestrian. This factor ψ is included as an extra multi-
plicative factor in the force from Equation 4 and helps in
more accurately modeling pedestrian behavior. The value of
λ is another parameter that needs to be learned from real-
world data.

In this work, we learn all parameters based on trajectories
of the JRDB dataset [8]. To learn the factors of the SFM
independent from the robot force, we manually processed
the dataset to categorize its trajectories into interaction and

Paper Ap Bp l τ Ar Br

Ours 2 0.89 0.4 0.6 7.93 0.99
Ref 2.66 0.79 0.59 0.43 2.66 0.79

TABLE I: Parameter Values for Social Robot Force Model com-
pared to [7]

non-interaction types. Non-interaction category involve the
trajectories of pedestrians far away from the robot (greater
than 3 meters) and visually not affected by it. These tra-
jectories are used to learn the parameters for the pedestrian
repulsion component. For the repulsion force from robots,
only the parameters A and B need to be learned from
the interaction trajectories, which represent those trajectories
where pedestrians are near the robot (empirically chosen
to be less than 3 meters as this was found to be the
minimum distance that effectively distinguishes the two types
of trajectories) and its presence causes deviation in their path.
These trajectories are used to learn the parameters for the
robot repulsion force component while retaining the values
for pedestrian repulsion part from the non-interaction tra-
jectories. A non-linear least squared optimization technique
from SciPy library [9] is used to learn the parameters in both
the scenarios. The resulting parameter values are summarized
in table 1.

B. Benchmarking Simulation

A notable feature of our benchmark simulation is the
objective metric to measure the deviation in trajectory of
the pedestrians caused by the presence of robots driven by
social navigation algorithms. This metric is based on the prior
research done by Hirose et al. [4]. The SRFM consists of
various individual force components, making it efficient to
evaluate a social navigation policy twice under the same
scenario, with one key difference: the robot’s impact on
the pedestrian. To measure the counterfactual perturbations
caused by the robot on the pedestrian’s trajectory, we first
set up the SRFM with its force components active and run
the benchmark, recording the pedestrian trajectories. We then
conduct a second run of the deterministic benchmark with
the robot force component disabled, i.e., pedestrians driven
by the SFM. This provides us with pedestrian trajectories
for the same scenario but without the robot’s influence.
By comparing the differences between these two sets of
trajectories and quantifying this difference using Fréchet
distance [10], we can quantify and test the deviation caused
by the robots driven by a social navigation policy. The
general idea behind the metric in our benchmark is that any
trajectory alteration due to the presence of robot deviates
from the norm for the pedestrian who would have traversed
a particular trajectory had the robot not been present.

C. Learning a Navigation Policy

To demonstrate the advantage of SRFM and our simulation
framework, we use reinforcement learning (RL) to train a
policy that navigates the robot through a crowd of pedes-
trians. While reaching a certain goal in the environment,
the robot is tasked to cause the least disturbance to the
pedestrians velocity and trajectory.



In the following we elaborate on the action, observation
and reward functions that we used to train and evaluate the
RL agent in the context of SRFM and social norms.

1) Action: We use a continuous action space for the agent
that consists of linear and angular velocities (v, w), with a
range of v ∈ [−0.5, 0.5] m s−1 and w ∈ [−π, π] rad s−1.
The robot is allowed to move freely through the environment
with no restriction to its direction to enable fast evasive
movements to make room for the pedestrians if they approach
the robot.

2) Observation: To reduce the complexity of the agent’s
observation space, all components are either relative to the
robot’s position or a boolean. As policy observation of the
environment, we use the distance and angle to the navigation
goal (2D) as well as of each pedestrian with in a predefined
social zone (4*10D), as described in Sec. II-A. We also
provide relative pedestrian velocity for each pedestrian in
the observation. We use an upper bound of the ten closest
pedestrians, as other research suggests an upper bound of
interfering humans within a scene of nine [3]. For scenarios
with less than ten pedestrians within the robot’s social zone,
the observation is padded with zeros. In order to make
learning more robust, the last action taken by the robot
(v, w), as well as the success (1D) and termination criteria
(boolean, 3D), are also included in the observation function.
In total, we use an observation space of size 48.

3) Reward: We keep the reward as simple as possible to
encourage faster training, since it is an important part for
training convergence. Our reward function rtotal consists of
three components,

rtotal = rterm +−k1 · rdist − k2 · rdiv, (6)

with k1, k2 as scaling factors. rterm is a large, sparse
termination reward, which is positive when the episode is
successful, and otherwise negative. Additionally, we are
penalizing collisions with walls or pedestrians double as
much as reaching the maximum time step limit. rdist is the
Euclidean distance to the goal position, normalized to the
range [0, 1], To benefit from our SRFM definition, we use
rdiv to penalize the agent for divergence of any pedestrian
from its path predicted by the SFRM. We calculate the
reference path by setting the robot force fr = 0.

4) Training method: To train the policy, we use the
Twin-Delayed Deep Deterministic Policy Gradient (TD3)
algorithm implementation of stable baselines 3 [12] with a
maximum of 2e6 training steps and a learning rate of 1e−4.
As TD3 is an off-policy RL algorithm, we set the length of
its experience replay buffer to 1e6. Each episode consists of
750 steps, where start and goal positions of the robot and
the pedestrians are assigned randomly while considering a
certain minimum distance d=2 between any of them to avoid
unlikely or dangerous situations where the robot spawns on
top of or very close to a pedestrian or vice versa.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate the influence of the SRFM in
terms of prediction accuracy on a given dataset, as well as

its usability for robot navigation policies. For evaluation and
training of the policy, we use the simulation environment as
described in Sec. II-B.

A. SRFM Prediction Accuracy

The trained parameters for the SRFM were tested on a
subset of trajectories derived from the JRDB dataset. The
testing was done in two phases. First, we tested the accuracy
of our learned SFM on pedestrian trajectories that are not
disrupted by the robot, which resulted in an Average Dis-
placement Error (ADE) of 0.70m. Afterwards, we checked
the accuracy of our SRFM on pedestrian trajectories that
are disrupted by the robot which results in ADE of 0.59m.
Additionally, we tested the SRFM without the robot force to
see if it matches the performance of the SFM on disrupted
trajectories. Since interactions bring a new dynamic to the
trajectories of humans, we wanted to test if this changes
the influence of other forces to the model. Without robot
force, the learned parameters showed an ADE of 0.75m
on interaction trajectories, whereas, using the robot force
showed great improvement with ADE = 0.59m on the same
trajectories. Therefore, it is shown that the robot force of
the SRFM has a great impact on the prediction accuracy,
while minimizing the influence to other parameters, such
as pedestrian repulsion fp of the model. The results are
presented in Table III.

B. Simulation Setup

For Training and Evaluation of the RL agent, we defined
different environments as described in the following.

1) Training: As training environment, we define a free
space of 15× 15 meters within our simulation. The robot’s
start and goal positions are randomly generated while main-
taining a minimum distance of 5 meters. During training, 10
pedestrians are randomly sampled within the environment
boundaries while maintaining a minimum distance of 2m
(the robot’s social zone) from the robot’s start position.
In addition, each pedestrian’s goal is randomly sampled,
restricting it to be outside the robot’s goal’s social zone
and keeping a minimum distance of 7 meters from that
pedestrian’s spawn location. In order to provide an active
and crowded training environment, once the pedestrian has
reached its goal, but the training episode has not ended, it is
assigned a new goal as described above. Since the robot does
not keep track of pedestrian instances, we artificially generate
a higher pedestrian population in this way, as they can
interfere with the robot’s path multiple times. An example
environment for training is shown in Fig. 2a.

2) Evaluation: To evaluate the policy after training, we
define two different scenarios as described by Francis et
al. [11] as parallel traffic and a variant of the circular
crossing. While keeping the same environmental boundaries
as for training, we adjust the start and end sampling of each
pedestrian and the robot.

In Scenario 1, we simulate a sidewalk or similar walking
area by maintaining the parallel flow of pedestrians bypass-
ing each other. For this scenario, the start and end positions



(a) Training environments (b) Footpath (c) Crosswalk

Fig. 2: Overview of the different used environments in this work. (a) shows the training environment that is used for the RL agent. (b)
and (c) visualize the two common pedestrian stream ”Footpath” and ”cross walk” as described in [11].

Approach Fréchet dist. ↓ Traj. Length ↓ Time ↓ Min. Robot Dist. ↑

Scenario 1 Ours 0.72 ± 0.05 8.89± 0.04 16.41± 0.34 ∗1.51 ± 0.05
Baseline 0.73± 0.01 8.71 ± 0.01 ∗13.99 ± 0.08 1.41± 0.01

Scenario 2 Ours ∗1.05 ± 0.01 ∗14.23 ± 0.07 ∗15.88 ± 0.11 ∗1.94 ± 0.01
Baseline 1.81± 0.06 15.17± 0.13 18.50± 0.48 1.27± 0.04

TABLE II: Performance of our against a baseline approach in terms of the Fréchet distance, trajectory length, the time taken to complete
the trajectory as well as the minimum distance from a pedestrian to the robot. All values are averaged over 20 runs with ∗ indicating
significance according to the independent t-test with p=0.05.

Model Force Test Trajectory ADE
SFM fa + fp Non-interaction 0.70m

SRFM fa + fp Interaction 0.75m
SRFM fa + fp + fr Interaction 0.59m

TABLE III: Error in trajectory prediction on the JRDB dataset
between the social force model and our social robot force model

of the pedestrians are set to create a natural parallel flow, as
can be seen in Fig. 2b. The start and end positions of the
robot are fixed and shown as a red circle and a green star.

For Scenario 2 a pedestrian crossing situation is created.
The pedestrian start and goal positions are set to form a
natural cross-flow, as shown in 2c. The robot start and
goal positions are set up to directly disrupt the flow at the
pedestrian crossing point, making it more difficult for the
robot to minimize its influence on the pedestrian trajectories.

C. RL Agent Performance

As a baseline, we trained another agent in the same way,
neglecting the path deviation penalty for pedestrians within
the social zone. While this agent still avoids pedestrians, it
does not incorporate any knowledge of its influence on their
trajectories. The results of the evaluation of both policies in
both scenarios are shown in Tab. II.

Scenario 1 shows marginal improvement in Fréchet dis-
tance when using our trained RL agent compared to the base-
line. However, the baseline outperforms our agent in other
objective metrics such as trajectory length of pedestrians and
the time taken for the trajectories. This can be explained
by the fact that although the baseline policy tries to avoid
pedestrian due to the learned collision penalty, it does not
care about pedestrian deviation and tries to reach the goal as
soon as possible. This leaves behind an empty region for the
pedestrians to move freely and reach their goal sooner. Our
trained RL agent on the other hand tries to respect pedestrian
deviation and in turn causes delays and longer trajectories
for the pedestrians in a simple scenario like Scenario 1. The
more complex scenario as shown in Scenario 2 presents the
capabilities of our learned agent where it outperforms the

baseline model in every metric significantly, showing a clear
and distinct advantage in its prediction capabilities.

IV. CONCLUSION

In this paper, we introduced a simulation framework to ob-
jectively measure and benchmark the deviation in trajectory
of pedestrians due to robots driven by different navigation
algorithms. By extending the traditional Social Force Model
(SFM) to include robot influence on pedestrian behavior,
our Social Robot Force Model (SRFM) offers enhanced
prediction accuracy for pedestrian trajectories disrupted by
robots. Experiments showed a low Average Displacement
Error (ADE) for the prediction accuracy of the SRFM,
and our reinforcement learning policy trained with SRFM
demonstrated improved results causing less deviation to
pedestrian trajectories. We will release the source code and
simulation framework for use by the research community to
encourage further development, replication, and validation of
our findings and evaluation of learned navigation policies.
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[11] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra, et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” arXiv
preprint arXiv:2306.16740, 2023.

[12] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” Journal of Machine Learning Research, vol. 22, 2021.


